Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(48): 33000-33012, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38032096

RESUMO

The orange carotenoid protein (OCP) functions as a sensor of the ambient light intensity and as a quencher of bilin excitons when it binds to the core of the cyanobacterial phycobilisome. We show herein that the photoactivation mechanism that converts the resting, orange-colored state, OCPO, to the active red-colored state, OCPR, requires a sequence of two reactions, each requiring absorption of a single photon by an intrinsic ketocarotenoid chromophore. Global analysis of absorption spectra recorded during continuous illumination of OCPO preparations from Synechocystis sp. PCC 6803 detects the reversible formation of a metastable intermediate, OCPI, in which the ketocarotenoid canthaxanthin exhibits an absorption spectrum with a partial red shift and a broadened vibronic structure compared to that of the OCPO state. While the dark recovery from OCPR to OCPI is a first-order, unimolecular reaction, the subsequent conversion of OCPI to the resting OCPO state is bimolecular, involving association of two OCPO monomers to form the dark-stable OCPO dimer aggregate. These results indicate that photodissociation of the OCPO dimer to form the monomeric OCPO intermediate is the first step in the photoactivation mechanism. Formation of the OCPO monomer from the dimer increases the mean value and broadens the distribution of the solvent-accessible surface area of the canthaxanthin chromophore measured in molecular dynamics trajectories at 300 K. The second step in the photoactivation mechanism is initiated by absorption of a second photon, by canthaxanthin in the OCPO monomer, which obtains the fully red-shifted and broadened absorption spectrum detected in the OCPR product state owing to displacement of the C-terminal domain and the translocation of canthaxanthin more than 12 Å into the N-terminal domain. Both steps in the photoactivation reaction of OCP are likely to involve changes in the structure of the C-terminal domain elicited by excited-state conformational motions of the ketocarotenoid.


Assuntos
Proteínas de Bactérias , Synechocystis , Proteínas de Bactérias/química , Cantaxantina , Luz , Synechocystis/metabolismo , Carotenoides/química
2.
J Org Chem ; 87(18): 12096-12108, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36066858

RESUMO

Triple OsO4-mediated dihydroxylation of meso-tetrakis(pentafluorophenyl)porphyrin formed a non-aromatic hexahydroxypyrrocorphin as a single stereo-isomer. A one-step oxidative conversion of all three diol functionalities to lactone moieties generated three out of the four possible porphotrilactone regioisomers that were spectroscopically and structurally characterized. This conversion recovered most of the porphyrinic macrocycle aromatic ring current, as seen in their 1H NMR spectra and modeled using DFT computations. Stepwise OsO4-mediated dihydroxylations of porpho-mono- and -di-lactones generated intermediate oxidation state compounds between the pyrrole-three pyrroline macrocycle of the pyrrocorphin and the pyrrole-three oxazolone chromophore of the trilactones. The aromaticity of these chromophores was reduced with increasing number of oxazolone to pyrroline replacements, showing the importance for the presence of three lactone moieties for the retention of the macrocycle aromaticity in the tris-ß,ß'-modified macrocycles. This work first describes hexahydoxypyrrocorphins, porphotrislactones, and the oxidation state intermediates between them; furthers the understanding of the roles of ß-lactone moieties in the expression of porphyrinic macrocycle aromaticity; and generally broadens access to chemically stable pyrrocorphins and pyrrocorphin analogues.


Assuntos
Oxazolona , Porfirinas , Lactonas/química , Estrutura Molecular , Oxazolona/química , Porfirinas/química , Pirróis/química
3.
Anal Chem ; 93(30): 10688-10696, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34288660

RESUMO

The high-throughput identification of unknown metabolites in biological samples remains challenging. Most current non-targeted metabolomics studies rely on mass spectrometry, followed by computational methods that rank thousands of candidate structures based on how closely their predicted mass spectra match the experimental mass spectrum of an unknown. We reasoned that the infrared (IR) spectra could be used in an analogous manner and could add orthologous structure discrimination; however, this has never been evaluated on large data sets. Here, we present results of a high-throughput computational method for predicting IR spectra of candidate compounds obtained from the PubChem database. Predicted spectra were ranked based on their similarity to gas-phase experimental IR spectra of test compounds obtained from the NIST. Our computational workflow (IRdentify) consists of a fast semiempirical quantum mechanical method for initial IR spectra prediction, ranking, and triaging, followed by a final IR spectra prediction and ranking using density functional theory. This approach resulted in the correct identification of 47% of 258 test compounds. On average, there were 2152 candidate structures evaluated for each test compound, giving a total of approximately 555,200 candidate structures evaluated. We discuss several variables that influenced the identification accuracy and then demonstrate the potential application of this approach in three areas: (1) combining IR and mass spectra rankings into a single composite rank score, (2) identifying the precursor and fragment ions using cryogenic ion vibrational spectroscopy, and (3) the incorporation of a trimethylsilyl derivatization step to extend the method compatibility to less-volatile compounds. Overall, our results suggest that matching computational with experimental IR spectra is a potentially powerful orthogonal option for adding significant high-throughput chemical structure discrimination when used with other non-targeted chemical structure identification methods.


Assuntos
Metabolômica , Bases de Dados Factuais , Íons , Espectrometria de Massas
4.
Molecules ; 26(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922133

RESUMO

The increased interest in sequencing cyanobacterial genomes has allowed the identification of new homologs to both the N-terminal domain (NTD) and C-terminal domain (CTD) of the Orange Carotenoid Protein (OCP). The N-terminal domain homologs are known as Helical Carotenoid Proteins (HCPs). Although some of these paralogs have been reported to act as singlet oxygen quenchers, their distinct functional roles remain unclear. One of these paralogs (HCP2) exclusively binds canthaxanthin (CAN) and its crystal structure has been recently characterized. Its absorption spectrum is significantly red-shifted, in comparison to the protein in solution, due to a dimerization where the two carotenoids are closely placed, favoring an electronic coupling interaction. Both the crystal and solution spectra are red-shifted by more than 50 nm when compared to canthaxanthin in solution. Using molecular dynamics (MD) and quantum mechanical/molecular mechanical (QM/MM) studies of HCP2, we aim to simulate these shifts as well as obtain insight into the environmental and coupling effects of carotenoid-protein interactions.


Assuntos
Proteínas de Bactérias/química , Cantaxantina/química , Cianobactérias , Simulação de Dinâmica Molecular , Conformação Proteica , Domínios Proteicos , Teoria Quântica
5.
Environ Sci Technol ; 54(3): 1623-1633, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31909596

RESUMO

Current predictive models of organic cation sorption assume that sorbates interact with all sites on aluminosilicate minerals in the same manner. To examine whether differences in aluminosilicate structure and the resultant changes in electrostatic potential influence the sorption of organic cations, seven smectites were chosen with different proportions of isomorphic substitutions (origin of clay charge) located in octahedral versus tetrahedral layers and with the presence or absence of aluminosilicate interlayers. Sorption coefficients for 14 benzylamine derivatives with systematic differences in compound structures were collected to understand the possible influence of aluminosilicate mineralogy. Benzylamine compounds with methyl group substitution on the charged amine or with electron-donating or -withdrawing ring substituents displayed decreases in cation exchange-normalized sorption coefficients (KCEC), by up to one order of magnitude, between hectorite (100% isomorphic substitution in the octahedral layer) and nontronite (100% isomorphic substitution in the tetrahedral layer). To understand this difference across aluminosilicates, stochastic molecular models of the various aluminosilicate minerals with interlayers were performed. These models showed that negative charge density associated with tetrahedral sites results in high positive electrostatic energy barriers within the interlayer, creating a penalty for compounds with positive charge spread over a larger compound surface area as occurs from primary to quaternary amines. Conversely, clays with charge originating from octahedral sites produce low electrostatic potential barriers within the interlayer, decreasing the penalty for quaternary amine sorption. Trends for nine cationic pharmaceutical compounds, which varied in size, group alkylation, and/or polar substituents, demonstrated similar decreases in KCEC values to aluminosilicate minerals with high electrostatic energy barriers. Overall, aluminosilicate mineralogy was found to exert a large influence (0.5-1 order of magnitude in sorption coefficients) on organic cation sorption. The application of atomistic electrostatic potential mapping of both sorbent and sorbate structures provided insights to explain trends in sorption coefficients that could not be described by the basic electrostatic potential theory or by assuming that sorbate structure moieties yielded additive sorption contributions.


Assuntos
Silicatos de Alumínio , Adsorção , Cátions , Eletricidade Estática
6.
J Org Chem ; 84(1): 239-256, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30484650

RESUMO

Porpholactones are porphyrinoids in which one or more ß,ß'-bonds of the parent chromophore were replaced by lactone moieties. Accessible to varying degrees by direct and nonselective oxidations of porphyrins, the rational syntheses of all five dilactone isomers along stepwise, controlled, and high-yielding routes via porphyrin → tetrahydroxyisobacteriochlorin metal complexes → isobacteriochlorindilactone metal complexes or porphyrin → tetrahydroxybacteriochlorin → bacteriochlorindilactone (and related) pathways, respectively, are described. A major benefit of these complementary routes over established methods is the simplicity of the isolation of the dilactones because of the reduced number of side products formed. In an alternative approach we report the direct and selective conversion of free base meso-tetrakis(pentafluorophenyl)porphyrin to all isomers of free base isobacteriodilactones using the oxidant cetyltrimethylN+MnO4-. The solid-state structures of some of the isomers and their precursors are reported, providing data on the conformational modulation induced by the derivatizations. We also rationalize computationally their differing thermodynamic stability and electronic properties. In making new efficient routes toward these dilactone isomers available, we enable the further study of this diverse class of porphyrinoids.


Assuntos
Lactonas/química , Porfirinas/química , Hidroxilação , Modelos Moleculares , Conformação Molecular , Oxirredução
7.
J Phys Chem A ; 123(34): 7470-7485, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31361130

RESUMO

Advances in the utilization of porphyrinoids for photomedicine, catalysis, and artificial photosynthesis require a fundamental understanding of the relationships between their molecular connectivity and resulting electronic structures. Herein, we analyze how the replacement of two pyrrolic Cß═Cß bonds of a porphyrin by two lactone (O═C-O) moieties modulates the ground-state thermodynamic stability and electronic structure of the resulting five possible pyrrole-modified porphyrin isomers. We made these determinations based on density functional theory (DFT) and time-dependent DFT computations of the optical spectra of all regioisomers. We also analyzed the computed magnetically induced currents of their aromatic π-systems. All regioisomers adopt the tautomeric state that maximizes aromaticity, whether or not transannular steric strains are incurred. In all isomers, the O═Cß-Oß bonds were found to support a macrocycle diatropic ring current. We attributed this to the delocalization of nonbonding electrons from the ring oxa- and oxo-atoms into the macrocycle. As a consequence of this delocalization, the dilactone regioisomers are as-or even more-aromatic than their hydroporphyrin congeners. The electronic structures follow different trends for the bacteriochlorin- and isobacteriochlorin-type isomers. The presence of either oxo- or oxa-oxygens conjugated with the macrocyclic π-system was found to be the minimal structural requirement for the regioisomers to exhibit distinct electronic properties. Our computational methods and mechanistic insights provide a basis for the systematic exploration of the physicochemical properties of porphyrinoids as a function of the number, relative orientation, and degree of macrocycle-π-conjugation of ß-substituents, in general, and for dilactone-based porphyrinic chromophores, in particular.


Assuntos
Lactonas/química , Porfirinas/química , Teoria da Densidade Funcional , Isomerismo , Modelos Químicos , Conformação Molecular , Oxazóis/química , Termodinâmica
8.
Phys Chem Chem Phys ; 20(27): 18233-18240, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29942972

RESUMO

Optical data (UV-vis absorption and fluorescence emission spectra, including fluorescence yields and lifetimes) and electrochemical measurements are used to quantify the modulation of the electronic properties of meso-tetrakis(pentafluorophenyl)-chlorin diol and -bacteriochlorin tetraols upon intramolecular chromene-annulation, including the investigation of regio- and stereoisomers. The small modulations of the frontier orbitals of the porphyrinoids are rationalized using DFT computations and can be traced to small electronic effects due to the co-planarized meso-aryl groups in combination with conformational effects.


Assuntos
Benzopiranos/química , Porfirinas/química , Elétrons , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Teoria Quântica , Estereoisomerismo
9.
Molecules ; 23(10)2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30308965

RESUMO

Multichromophoric interactions control the initial events of energy capture and transfer in the light harvesting peridinin-chlorophyll a protein (PCP) from marine algae dinoflagellates. Due to the van der Waals association of the carotenoid peridinin (Per) with chlorophyll a in a unique 4:1 stoichiometric ratio, supramolecular quantum mechanical/molecular mechanical (QM/MM) calculations are essential to accurately describe structure, spectroscopy, and electronic coupling. We show that, by enabling inter-chromophore electronic coupling, substantial effects arise in the nature of the transition dipole moment and the absorption spectrum. We further hypothesize that inter-protein domain Per-Per interactions are not negligible, and are needed to explain the experimental reconstruction features of the spectrum in wild-type PCP.


Assuntos
Carotenoides/química , Clorofila/química , Complexos de Proteínas Captadores de Luz/química , Modelos Moleculares , Fotossíntese , Teoria Quântica , Simulação por Computador
10.
J Am Chem Soc ; 139(1): 548-560, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-27997161

RESUMO

Owing to their intense near infrared absorption and emission properties, to the ability to photogenerate singlet oxygen, or to act as photoacoustic imaging agents within the optical window of tissue, bacteriochlorins (2,3,12,13-tetrahydroporphyrins) promise to be of utility in many biomedical and technical applications. The ability to fine-tune the electronic properties of synthetic bacteriochlorins is important for these purposes. In this vein, we report the synthesis, structure determination, optical properties, and theoretical analysis of the electronic structure of a family of expanded bacteriochlorin analogues. The stepwise expansion of both pyrroline moieties in near-planar meso-tetraarylbacteriochlorins to morpholine moieties yields ruffled mono- and bismorpholinobacteriochlorins with broadened and up to 90 nm bathochromically shifted bacteriochlorin-like optical spectra. Intramolecular ring-closure reactions of the morpholine moiety with the flanking meso-aryl groups leads to a sharpened, blue-shifted wavelength λmax band, bucking the general red-shifting trend expected for such linkages. A conformational origin of the optical modulations was previously proposed, but discrepancies between the solid state conformations and the corresponding solution state optical spectra defy simple structure-optical property correlations. Using density functional theory and excited state methods, we derive the molecular origins of the spectral modulations. About half of the modulation is due to ruffling of the bacteriochlorin chromophore. Surprisingly, the other half originates in the localized twisting of the Cß-Cα-Cα-Cß dihedral angle within the morpholine moieties. Our calculations suggest a predictable and large spectral shift (2.0 nm/deg twist) for morpholine deformations within these fairly flexible moieties. This morpholine moiety deformation can take place largely independently from the overall macrocycle conformation. The morpholinobacteriochlorins are thus excellent models for localized bacteriochlorin chromophore deformations that are suggested to also be responsible for the optical modulation of naturally occurring bacteriochlorophylls. We propose the use of morpholinobacteriochlorins as mechanochromic dyes in engineering and materials science applications.


Assuntos
Porfirinas/química , Cristalografia por Raios X , Modelos Moleculares , Conformação Molecular , Porfirinas/síntese química , Teoria Quântica , Espectrofotometria Ultravioleta
11.
J Org Chem ; 82(18): 9279-9290, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28831799

RESUMO

Three new homologous TEMPO oxoammonium salts and three homologous nitroxide radicals have been prepared and characterized. The oxidation properties of the salts have been explored. The direct 13C NMR and EPR spectra of the nitroxide free radicals and the oxoammonium salts, along with TEMPO and its oxoammonium salt, have been successfully measured with little peak broadening of the NMR signals. In the spectra of all ten compounds (nitroxides and corresponding oxoammonium salts), the carbons in the 2,2,6,6-tetramethylpiperidine core do not appear, implying paramagnetic properties. This unpredicted overall paramagnetism in the oxoammonium salt solutions is explained by a redox equilibrium as shown between oxoammonium salts and trace amounts of corresponding nitroxide. This equilibrium is confirmed by electron interchange reactions between nitroxides with an N-acetyl substituent and oxoammonium salts with longer acyl side chains.

12.
J Am Chem Soc ; 138(18): 5904-15, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27127896

RESUMO

One of the greatest challenges with single-walled carbon nanotube (SWNT) photovoltaics and nanostructured devices is maintaining the nanotubes in their pristine state (i.e., devoid of aggregation and inhomogeneous doping) so that their unique spectroscopic and transport characteristics are preserved. To this effect, we report on the synthesis and self-assembly of a C60-functionalized flavin (FC60), composed of PCBM and isoalloxazine moieties attached on either ends of a linear, C-12 aliphatic spacer. Small amounts of FC60 (up to 3 molar %) were shown to coassembly with an organic soluble derivative of flavin (FC12) around SWNTs and impart effective dispersion and individualization. A key annealing step was necessary to perfect the isoalloxazine helix and expel the C60 moiety away from the nanotubes. Steady-state and transient absorption spectroscopy illustrate that 1% or higher incorporation of FC60 allows for an effective photoinduced charge transfer quenching of the encased SWNTs through the seamless helical encase. This is enabled via the direct π-π overlap between the graphene sidewalls, isoalloxazine helix, and the C60 cage that facilitates SWNT exciton dissociation and electron transfer to the PCBM moiety. Atomistic molecular simulations indicate that the stability of the complex originates from enhanced van der Waals interactions of the flexible spacer wrapped around the fullerene that brings the C60 in π-π overlap with the isoalloxazine helix. The remarkable spectral purity (in terms of narrow E(S)ii line widths) for the resulting ground-state complex signals a new class of highly organized supramolecular nanotube architecture with profound importance for advanced nanostructured devices.


Assuntos
Flavinas/química , Fulerenos/química , Nanotubos de Carbono/química , Simulação por Computador , Grafite/química , Indicadores e Reagentes , Modelos Moleculares , Conformação Molecular , Simulação de Dinâmica Molecular , Processos Fotoquímicos
13.
J Org Chem ; 81(9): 3603-18, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-27077461

RESUMO

Syntheses and optical properties of mono- and bis-chromene-annulated bacteriochlorins are described. Known monochromene-annulated meso-(pentafluorophenyl)chlorin is susceptible to a regioselective OsO4-mediated dihydroxylation, generating two monochromene-annulated trihydroxybacteriochlorin stereoisomers: either the newly introduced vic-cis-diol functionality is on the same side as the vic-cis-diol moiety the chromene-annulation was based on or on the opposite side. Treatment of the two isomers with heat or base generates different sets of bis-chromene-annulated bacteriochlorin stereo- and regioisomers. Detailed 1D and 2D (1)H and (19)F NMR spectroscopic investigations allowed the characterization of the isomers that formed. The regioselectivity of the second annulation reaction was rationalized computationally on steric grounds. The bacteriochlorin-type optical spectra of the mono- and bis-chromene-annulated bacteriochlorins are modulated as a result of the annulation, with each isomer possessing a unique spectrum, attributed to the effects the regiochemically distinct annulations have on the conformation of the chromophore. The formation of a bis-chromene-annulated chlorin from the bacteriochlorins is also described, including its X-ray crystal structure, revealing some details of the metrics of the chromene-annulated moiety. The vic-diol functionality of monochromene-annulated trihydroxybacteriochlorins is also susceptible to oxidation and ring-expansion reactions, generating chromene-annulated pyrrole-modified chlorins incorporating oxazolone and morpholine moieties. The work expands the body of work on the synthesis and optical fine-tuning of meso-aryl-substituted bacteriochlorins.


Assuntos
Benzopiranos/química , Benzopiranos/síntese química , Oxazolona/química , Porfirinas/química , Pirróis/química , Cristalografia por Raios X , Isomerismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Oxirredução , Porfirinas/síntese química
14.
J Am Chem Soc ; 136(20): 7452-63, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24821307

RESUMO

Establishing methods to accurately assess and model the binding strength of surfactants around a given-chirality single-walled carbon nanotube (SWNT) are crucial for selective enrichment, targeted functionalization, and spectrally sharp nanodevices. Unlike surfactant exchange, which is subject to interferences from the second surfactant, we herein introduce a thermal dissociation method based on reversible H(+)/O2 doping to determine SWNT/surfactant thermodynamic stability values with greater fidelity. Thermodynamic values were reproduced using molecular mechanics augmented by ab initio calculations in order to better assess π-π interactions. This afforded detailed quantification of the flavin binding strength in terms of π-π stacking (55-58%), with the remaining portion roughly split 3:1 between electrostatic plus van der Waals flavin mononucleotide (FMN) interdigitation and H-bonding interactions, respectively. Quasi-epitaxial π-π alignment between the near-armchair FMN helix and the underlying nanotube lattice plays a crucial role in stabilizing these assemblies. The close resemblance of the thermal dissociation method to helix-coil and ligand-binding transitions of DNA opens up a unique insight into the molecular engineering of self-organizing surfactants around various-chirality nanotubes.


Assuntos
Dinitrocresóis/química , Nanotubos de Carbono/química , Termodinâmica , Conformação Molecular , Simulação de Dinâmica Molecular , Teoria Quântica , Eletricidade Estática
15.
J Phys Chem B ; 128(25): 5966-5972, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38877606

RESUMO

Retinylidene conformations and rearrangements of the hydrogen-bond network in the vicinity of the protonated Schiff base (PSB) play a key role in the proton transfer process in the Heliorhodopsin photocycle. Photoisomerization of the retinylidene chromophore and the formation of photoproducts corresponding to the early intermediates were modeled using a combination of molecular dynamics simulations and quantum mechanical/molecular mechanics calculations. The resulting structures were refined, and the respective excitation energies were calculated. Aided by metadynamics simulations, we constructed a photoisomerized intermediate where the 13-cis retinylidene chromophore is rotated about a parallel pair of double bonds at C13=C14 and C15=NZ double bonds. We demonstrate how the deprotonation of the Schiff base and the concomitant protonation of the Glu107 counterion are only favored because of these rearrangements.

16.
ACS Chem Biol ; 19(4): 926-937, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38477945

RESUMO

Invariant natural killer T (iNKT) cells play an important role in many innate and adaptive immune responses, with potential applications in cancer immunotherapy. The glycolipid KRN7000, an α-galactosylceramide, potently activates iNKT cells but has shown limited anticancer effects in human clinical trials conducted so far. In spite of almost three decades of structure-activity relationship studies, no alternative glycolipid has yet emerged as a superior clinical candidate. One reason for the slow progress in this area is that standard mouse models do not accurately reflect the specific ligand recognition by human iNKT cells and their requirements for activation. Here we evaluated a series of KRN7000 analogues using a recently developed humanized mouse model that expresses a human αTCR chain sequence and human CD1d. In this process, a more stimulatory, previously reported but largely overlooked glycolipid was identified, and its activity was probed and rationalized via molecular simulations.


Assuntos
Galactosilceramidas , Glicolipídeos , Células T Matadoras Naturais , Animais , Humanos , Camundongos , Antígenos CD1d , Glicolipídeos/agonistas
17.
J Am Chem Soc ; 135(41): 15585-94, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24087848

RESUMO

Au25(SR)18 (R = -CH2-CH2-Ph) is a molecule-like nanocluster displaying distinct electrochemical and optical features. Although it is often taken as an example of a particularly well-understood cluster, very recent literature has provided a quite unclear or even a controversial description of its properties. We prepared monodisperse Au25(SR)18(0) and studied by cyclic voltammetry, under particularly controlled conditions, the kinetics of its reduction or oxidation to a series of charge states, -2, -1, +1, +2, and +3. For each electrode process, we determined the standard heterogeneous electron-transfer (ET) rate constants and the reorganization energies. The latter points to a relatively large inner reorganization. Reduction to form Au25(SR)18(2-) and oxidation to form Au25(SR)18(2+) and Au25(SR)18(3+) are chemically irreversible. The corresponding decay rate constants and lifetimes are incompatible with interpretations of very recent literature reports. The problem of how ET affects the Au25 magnetism was addressed by comparing the continuous-wave electron paramagnetic resonance (cw-EPR) behaviors of radical Au25(SR)18(0) and its oxidation product, Au25(SR)18(+). As opposed to recent experimental and computational results, our study provides compelling evidence that the latter is a diamagnetic species. The DFT-computed optical absorption spectra and density of states of the -1, 0, and +1 charge states nicely reproduced the experimentally estimated dependence of the HOMO-LUMO energy gap on the actual charge carried by the cluster. The conclusions about the magnetism of the 0 and +1 charge states were also reproduced, stressing that the three HOMOs are not virtually degenerate as routinely assumed: In particular, the splitting of the HOMO manifold in the cation species is severe, suggesting that the usefulness of the superatom interpretation is limited. The electrochemical, EPR, and computational results thus provide a self-consistent picture of the properties of Au25(SR)18 as a function of its charge state and may furnish a methodology blueprint for understanding the redox and magnetic behaviors of similar molecule-like gold nanoclusters.

18.
J Org Chem ; 78(22): 11213-20, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24111612

RESUMO

The first rearrangement of 2-methyleneoxetanes to α,ß-unsaturated methylketones is reported. It is proposed that when these substrates are heated, the corresponding oxetenes are formed and subsequently undergo electrocyclic ring-opening to methyl vinylketones. In particular, α-silyl-α,ß-unsaturated methylketones were isolated in moderate to high yields and with high stereoselectivities. Based on the proposed mechanism, density functional theory explains the differential kinetics and stereoselectivities among substrates.

19.
J Am Chem Soc ; 134(32): 13196-9, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22871052

RESUMO

In order to truly unlock advanced applications of single-walled carbon nanotubes (SWNTs), one needs to separate them according to both chirality and handedness. Here we show that the chiral D-ribityl phosphate chain of flavin mononucleotide (FMN) induces a right-handed helix that enriches the left-handed SWNTs for all suspended (n,m) species. Such enantioselectivity stems from the sp(3) hybridization of the N atom anchoring the sugar moiety to the flavin ring. This produces two FMN conformations (syn and anti) analogous to DNA. Electrostatic interactions between the neighboring uracil moiety and the 2'-OH group of the side chain provide greater stability to the anti-FMN conformation that leads to a right-handed FMN helix. The right-handed twist that the FMN helix imposes to the underlying nanotube, similar to "Indian burn", causes diameter dilation of only the left-handed SWNTs, whose improved intermolecular interactions with the overlaying FMN helix, impart enantioselection.


Assuntos
Mononucleotídeo de Flavina/química , Modelos Biológicos , Nanotubos de Carbono/química , Dicroísmo Circular , Ligação de Hidrogênio , Estrutura Secundária de Proteína , Estereoisomerismo
20.
Chem Res Toxicol ; 25(11): 2451-61, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23025578

RESUMO

8,5'-Cyclopurine deoxynucleosides are unique tandem lesions containing an additional covalent bond between the base and the sugar. These mutagenic and genotoxic lesions are repaired only by nucleotide excision repair. The N-glycosidic (or C1'-N9) bond of 2'-deoxyguanosine (dG) derivatives is usually susceptible to acid hydrolysis, but even after cleavage of this bond of the cyclopurine lesions, the base would remain attached to the sugar. Here, the stability of the N-glycosidic bond and the products formed by formic acid hydrolysis of (5'S)-8,5'-cyclo-2'-deoxyguanosine (S-cdG) were investigated. For comparison, the stability of the N-glycosidic bond of 8,5'-cyclo-2',5'-dideoxyguanosine (ddcdG), 8-methyl-2'-deoxyguanosine (8-Me-dG), 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-Oxo-dG), and dG was also studied. In various acid conditions, S-cdG and ddcdG exhibited similar stability to hydrolysis. Likewise, 8-Me-dG and dG showed comparable stability, but the half-lives of the cyclic dG lesions were at least 5-fold higher than those of dG or 8-Me-dG. NMR studies were carried out to investigate the products formed after the cleavage of the C1'-N9 bond. 2-Deoxyribose generated α and ß anomers of deoxyribopyranose and deoxyribopyranose oligomers following acid treatment. S-cdG gave α- and ß-deoxyribopyranose linked guanine as the major products, but α and ß anomers of deoxyribofuranose linked guanine and other products were also detected. The N-glycosidic bond of 8-Oxo-dG was found exceptionally stable in acid. Computational studies determined that both the protonation of the N7 atom and the rate constant in the bond breaking step control the overall kinetics of hydrolysis, but both varied for the molecules studied indicating a delicate balance between the two steps. Nevertheless, the computational approach successfully predicted the trend observed experimentally. For 8-Oxo-dG, the low pK(a) of O(8) and N3 prevented appreciable protonation, making the free energy for N-glycosidic bond cleavage in the subsequent step very high.


Assuntos
Desoxiguanosina/análogos & derivados , Glicosídeos/química , Desoxiguanosina/química , Espectroscopia de Ressonância Magnética/normas , Teoria Quântica , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA