Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO Rep ; 16(3): 341-50, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25608529

RESUMO

RNA interference (RNAi) is a widespread and widely exploited phenomenon. Here, we show that changing inositol 1,4,5-trisphosphate (IP3) signalling alters RNAi sensitivity in Caenorhabditis elegans. Reducing IP3 signalling enhances sensitivity to RNAi in a broad range of genes and tissues. Conversely up-regulating IP3 signalling decreases sensitivity. Tissue-specific rescue experiments suggest IP3 functions in the intestine. We also exploit IP3 signalling mutants to further enhance the sensitivity of RNAi hypersensitive strains. These results demonstrate that conserved cell signalling pathways can modify RNAi responses, implying that RNAi responses may be influenced by an animal's physiology or environment.


Assuntos
Caenorhabditis elegans/fisiologia , Inositol 1,4,5-Trifosfato/metabolismo , Interferência de RNA/fisiologia , Transdução de Sinais/fisiologia , Animais , Caenorhabditis elegans/genética , Processamento de Imagem Assistida por Computador , Mucosa Intestinal/metabolismo , Microscopia de Fluorescência , Modelos Biológicos , RNA de Cadeia Dupla , Transdução de Sinais/genética
2.
Aging Cell ; 20(5): e13359, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33939875

RESUMO

Mitochondrial prohibitins (PHB) are highly conserved proteins with a peculiar effect on lifespan. While PHB depletion shortens lifespan of wild-type animals, it enhances longevity of a plethora of metabolically compromised mutants, including target of rapamycin complex 2 (TORC2) mutants sgk-1 and rict-1. Here, we show that sgk-1 mutants have impaired mitochondrial homeostasis, lipogenesis and yolk formation, plausibly due to alterations in membrane lipid and sterol homeostasis. Remarkably, all these features are suppressed by PHB depletion. Our analysis shows the requirement of SRBP1/SBP-1 for the lifespan extension of sgk-1 mutants and the further extension conferred by PHB depletion. Moreover, although the mitochondrial unfolded protein response (UPRmt ) and autophagy are induced in sgk-1 mutants and upon PHB depletion, they are dispensable for lifespan. However, the enhanced longevity caused by PHB depletion in sgk-1 mutants requires both, the UPRmt and autophagy, but not mitophagy. We hypothesize that UPRmt induction upon PHB depletion extends lifespan of sgk-1 mutants through autophagy and probably modulation of lipid metabolism.


Assuntos
Autofagia , Proteínas de Caenorhabditis elegans/genética , Longevidade/fisiologia , Mitocôndrias/fisiologia , Proibitinas/fisiologia , Proteínas Serina-Treonina Quinases/genética , Resposta a Proteínas não Dobradas , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/ultraestrutura , Metabolismo dos Lipídeos/genética , Lipogênese , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Mitocôndrias/ultraestrutura , Mitofagia , Esteróis/metabolismo
3.
PLoS One ; 9(9): e107671, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25265021

RESUMO

Lifespan regulation by mitochondrial proteins has been well described, however, the mechanism of this regulation is not fully understood. Amongst the mitochondrial proteins profoundly affecting ageing are prohibitins (PHB-1 and PHB-2). Paradoxically, in C. elegans prohibitin depletion shortens the lifespan of wild type animals while dramatically extending that of metabolically compromised animals, such as daf-2-insulin-receptor mutants. Here we show that amongst the three kinases known to act downstream of daf-2, only loss of function of sgk-1 recapitulates the ageing phenotype observed in daf-2 mutants upon prohibitin depletion. Interestingly, signalling through SGK-1 receives input from an additional pathway, parallel to DAF-2, for the prohibitin-mediated lifespan phenotype. We investigated the effect of prohibitin depletion on the mitochondrial unfolded protein response (UPRmt). Remarkably, the lifespan extension upon prohibitin elimination, of both daf-2 and sgk-1 mutants, is accompanied by suppression of the UPRmt induced by lack of prohibitin. On the contrary, gain of function of SGK-1 results in further shortening of lifespan and a further increase of the UPRmt in prohibitin depleted animals. Moreover, SGK-1 interacts with RICT-1 for the regulation of the UPRmt in a parallel pathway to DAF-2. Interestingly, prohibitin depletion in rict-1 loss of function mutant animals also causes lifespan extension. Finally, we reveal an unprecedented role for mTORC2-SGK-1 in the regulation of mitochodrial homeostasis. Together, these results give further insight into the mechanism of lifespan regulation by mitochondrial function and reveal a cross-talk of mitochondria with two key pathways, Insulin/IGF and mTORC2, for the regulation of ageing and stress response.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Insulina/metabolismo , Expectativa de Vida , Mitocôndrias/fisiologia , Complexos Multiproteicos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/fisiologia , Somatomedinas/metabolismo , Estresse Fisiológico , Serina-Treonina Quinases TOR/metabolismo , Animais , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/fisiologia , Alvo Mecanístico do Complexo 2 de Rapamicina , Proibitinas
4.
Appl Environ Microbiol ; 71(11): 6863-9, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16269720

RESUMO

A field collected population of Plutella xylostella (SERD4) was selected in the laboratory with Bacillus thuringiensis endotoxins Cry1Ac (Cry1Ac-SEL) and Cry1Ab (Cry1Ab-SEL). Both subpopulations showed similar phenotypes: high resistance to the Cry1A toxins and little cross-resistance to Cry1Ca or Cry1D. A previous analysis of the Cry1Ac-SEL showed incompletely dominant resistance to Cry1Ac with more than one factor, at least one of which was sex influenced. In the present study reciprocal mass crosses between Cry1Ab-SEL and a laboratory susceptible population (ROTH) provided evidence that Cry1Ab resistance was also inherited as incompletely dominant trait with more than one factor, and at least one of the factors was sex influenced. Analysis of single pair mating indicated that Cry1Ab-SEL was still heterogeneous for Cry1Ab resistance genes, showing genes with different degrees of dominance. Binding studies showed a large reduction of specific binding of Cry1Ab and Cry1Ac to midgut membrane vesicles of the Cry1Ab-SEL subpopulation. Cry1Ab-SEL was found to be more susceptible to trypsin-activated Cry1Ab toxin than protoxin, although no defect in toxin activation was found. Present and previous results indicate a common basis of resistance to both Cry1Ab and Cry1Ac in selected subpopulations and suggest that a similar set of resistance genes are responsible for resistance to Cry1Ab and Cry1Ac and are selected whichever toxin was used. The possibility of an incompletely dominant trait of resistant to these toxins should be taken into account when considering refuge resistance management strategies.


Assuntos
Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Endotoxinas/toxicidade , Resistência a Inseticidas/genética , Mariposas/efeitos dos fármacos , Controle Biológico de Vetores , Alelos , Animais , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Bioensaio , Cruzamentos Genéticos , Sistema Digestório/metabolismo , Endotoxinas/metabolismo , Feminino , Genes Dominantes , Teste de Complementação Genética , Proteínas Hemolisinas , Masculino , Mariposas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA