Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Ecol ; 31(1): 119-133, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34674328

RESUMO

Recent agricultural intensification threatens global biodiversity with amphibians being one of the most impacted groups. Because of their biphasic life cycle, amphibians are particularly vulnerable to habitat loss and fragmentation that often result in small, isolated populations and loss of genetic diversity. Here, we studied how landscape heterogeneity affects genetic diversity, gene flow and demographic parameters in the marbled newt, Triturus marmoratus, over a hedgerow network landscape in Western France. While the northern part of the study area consists of preserved hedged farmland, the southern part was more profoundly converted for intensive arable crops production after WWII. Based on 67 sampled ponds and 10 microsatellite loci, we characterized regional population genetic structure and evaluated the correlation between landscape variables and (i) local genetic diversity using mixed models and (ii) genetic distance using multiple regression methods and commonality analysis. We identified a single genetic population characterized by a spatially heterogeneous isolation-by-distance pattern. Pond density in the surrounding landscape positively affected local genetic diversity while arable crop land cover negatively affected gene flow and connectivity. We used demographic inferences to quantitatively assess differences in effective population density and dispersal between the contrasted landscapes characterizing the northern and southern parts of the study area. Altogether, results suggest recent land conversion affected T. marmoratus through reduction in both effective population density and dispersal due to habitat loss and reduced connectivity.


Assuntos
Fluxo Gênico , Genética Populacional , Animais , Ecossistema , Variação Genética , Repetições de Microssatélites , Salamandridae
2.
Proc Natl Acad Sci U S A ; 116(33): 16442-16447, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31358630

RESUMO

Agricultural landscape homogenization has detrimental effects on biodiversity and key ecosystem services. Increasing agricultural landscape heterogeneity by increasing seminatural cover can help to mitigate biodiversity loss. However, the amount of seminatural cover is generally low and difficult to increase in many intensively managed agricultural landscapes. We hypothesized that increasing the heterogeneity of the crop mosaic itself (hereafter "crop heterogeneity") can also have positive effects on biodiversity. In 8 contrasting regions of Europe and North America, we selected 435 landscapes along independent gradients of crop diversity and mean field size. Within each landscape, we selected 3 sampling sites in 1, 2, or 3 crop types. We sampled 7 taxa (plants, bees, butterflies, hoverflies, carabids, spiders, and birds) and calculated a synthetic index of multitrophic diversity at the landscape level. Increasing crop heterogeneity was more beneficial for multitrophic diversity than increasing seminatural cover. For instance, the effect of decreasing mean field size from 5 to 2.8 ha was as strong as the effect of increasing seminatural cover from 0.5 to 11%. Decreasing mean field size benefited multitrophic diversity even in the absence of seminatural vegetation between fields. Increasing the number of crop types sampled had a positive effect on landscape-level multitrophic diversity. However, the effect of increasing crop diversity in the landscape surrounding fields sampled depended on the amount of seminatural cover. Our study provides large-scale, multitrophic, cross-regional evidence that increasing crop heterogeneity can be an effective way to increase biodiversity in agricultural landscapes without taking land out of agricultural production.


Assuntos
Agricultura , Biodiversidade , Produtos Agrícolas , Ecossistema , Animais , Abelhas , Aves , Borboletas , Europa (Continente) , Humanos , América do Norte , Aranhas
3.
Genetica ; 147(1): 69-78, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30671744

RESUMO

The Montagu's harrier (Circus pygargus) is a semi-colonial raptor species widely but patchily distributed across the Palearctic region with recorded cases of philopatry and presence of extra-pair copulation. In order to assess Montagu's harrier spatial genetic structure and contemporary gene flow, we developed 16 new microsatellite markers using 454 pyrosequencing. Genotypes of 117 chicks sampled in a 200 × 300 km farmland area in Central Western France were analyzed to characterize genetic polymorphism at each locus and regional and fine-scale genetic structure. Fourteen markers were found polymorphic, with a number of alleles ranging from 3 to 11. The expected and observed heterozygosities ranged from 0.36 to 0.856 and from 0.35 to 0.868, respectively. A single genetic unit was found at the regional scale with higher genetic similarity observed at a small spatial scale (up to 10 km). Our results are consistent with overall large-scale juvenile and adult dispersal together with small-scale male philopatry. Cross-species amplification of this set of microsatellites makers has been successful in two closely related harrier species: the marsh harrier (Circus aeruginosus) and the Hen harrier (Circus cyaneus) for which 14 and 12 markers were polymorphic, respectively. These new microsatellite markers could be used to study the population genetic structure, contemporary gene flow and parentage analyses in these three species and to conduct microsatellite-based demographic inferences on the Montagu's harrier.


Assuntos
Aves/genética , Repetições de Microssatélites , Polimorfismo Genético , Animais , Aves/classificação , Feminino , Fluxo Gênico , Especiação Genética , Masculino
4.
Mol Ecol ; 26(20): 5421-5434, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28802079

RESUMO

Admixture between differentiated populations is considered to be a powerful mechanism stimulating the invasive success of some introduced species. It is generally facilitated through multiple introductions; however, the importance of admixture prior to introduction has rarely been considered. We assess the likelihood that the invasive Ambrosia artemisiifolia populations of Europe and Australia developed through multiple introductions or were sourced from a historical admixture zone within native North America. To do this, we combine large genomic and sampling data sets analysed with approximate Bayesian computation and random forest scenario evaluation to compare single and multiple invasion scenarios with pre- and postintroduction admixture simultaneously. We show the historical admixture zone within native North America originated before global invasion of this weed and could act as a potential source of introduced populations. We provide evidence supporting the hypothesis that the invasive populations established through multiple introductions from the native range into Europe and subsequent bridgehead invasion into Australia. We discuss the evolutionary mechanisms that could promote invasiveness and evolutionary potential of alien species from bridgehead invasions and admixed source populations.


Assuntos
Ambrosia/genética , Genética Populacional , Espécies Introduzidas , Austrália , Teorema de Bayes , Evolução Biológica , DNA de Plantas/genética , Europa (Continente) , Genótipo , Modelos Genéticos , Polimorfismo de Nucleotídeo Único
5.
Mol Ecol ; 24(8): 1713-28, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25773398

RESUMO

Dispersal may be strongly influenced by landscape and habitat characteristics that could either enhance or restrict movements of organisms. Therefore, spatial heterogeneity in landscape structure could influence gene flow and the spatial structure of populations. In the past decades, agricultural intensification has led to the reduction in grassland surfaces, their fragmentation and intensification. As these changes are not homogeneously distributed in landscapes, they have resulted in spatial heterogeneity with generally less intensified hedged farmland areas remaining alongside streams and rivers. In this study, we assessed spatial pattern of abundance and population genetic structure of a flightless grasshopper species, Pezotettix giornae, based on the surveys of 363 grasslands in a 430-km² agricultural landscape of western France. Data were analysed using geostatistics and landscape genetics based on microsatellites markers and computer simulations. Results suggested that small-scale intense dispersal allows this species to survive in intensive agricultural landscapes. A complex spatial genetic structure related to landscape and habitat characteristics was also detected. Two P. giornae genetic clusters bisected by a linear hedged farmland were inferred from clustering analyses. This linear hedged farmland was characterized by high hedgerow and grassland density as well as higher grassland temporal stability that were suspected to slow down dispersal. Computer simulations demonstrated that a linear-shaped landscape feature limiting dispersal could be detected as a barrier to gene flow and generate the observed genetic pattern. This study illustrates the relevance of using computer simulations to test hypotheses in landscape genetics studies.


Assuntos
Distribuição Animal , Ecossistema , Genética Populacional , Gafanhotos/genética , Agricultura , Animais , Teorema de Bayes , Análise por Conglomerados , França , Frequência do Gene , Pradaria , Análise Espacial
6.
Mol Ecol ; 23(13): 3214-25, 2014 07.
Artigo em Inglês | MEDLINE | ID: mdl-24888708

RESUMO

In highly fluctuating populations with complex social systems, genetic patterns are likely to vary in space and time due to demographic and behavioural processes. Cyclic rodents are extreme examples of demographically instable populations that often exhibit strong social organization. In such populations, kin structure and spacing behaviour may vary with density fluctuations and impact both the composition and spatial structure of genetic diversity. In this study, we analysed the multiannual genetic structure of a cyclic rodent, Microtus arvalis, using a sample of 875 individuals trapped over three complete cycles (from 1999 to 2007) and genotyped at 10 microsatellite loci. We tested the predictions that genetic diversity and gene flow intensity vary with density fluctuations. We found evidences for both spatial scale-dependant variations in genetic diversity and higher gene flow during high density. Moreover, investigation of sex-specific relatedness patterns revealed that, although dispersal is biased toward males in this species, distances moved by both sexes were lengthened during high density. Altogether, these results suggest that an increase in migration with density allows to restore the local loss of genetic diversity occurring during low density. We then postulate that this change in migration results from local competition, which enhances female colonization of empty spaces and male dispersal among colonies.


Assuntos
Arvicolinae/genética , Fluxo Gênico , Variação Genética , Genética Populacional , Distribuição Animal , Animais , Feminino , França , Genótipo , Masculino , Repetições de Microssatélites , Densidade Demográfica , Dinâmica Populacional
7.
BMC Ecol ; 14: 17, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24886481

RESUMO

BACKGROUND: Cyclic rodent population dynamics are subjected to both intrinsic regulatory processes such as density-dependence and extrinsic environmental forcing. Among extrinsic factors, seasonal environmental variation is understood to facilitate cycles. In rodents, these processes have been studied mostly independently and their relative importance for population dynamics is poorly known. RESULTS: We performed a detailed analysis of common vole (Microtus arvalis) reproduction in a cyclic population using a spatially extensive data set over 17 years in central-western France. Environmental seasonality was the main source of explained variation in common vole reproduction. Additionally, inter-annual variation in the environment explained a smaller part of the variance in reproduction in spring and summer than in winter, whereas the effect of density was only found in autumn and winter. In particular, we detected a strong impact of plant productivity on fecundity during the breeding season, with low vegetation productivity being able to bring vole reproduction nearly to a halt. In contrast, vole reproduction during autumn and winter was mainly shaped by intrinsic factors, with only the longer and heavier females being able to reproduce. The effect of population density on reproduction was negative, mediated by direct negative effects on the proportion of breeders in autumn and winter during outbreak years and by a delayed negative effect on litter size the following year. CONCLUSIONS: During the main breeding season, variability of female vole reproduction is predominantly shaped by food resources, suggesting that only highly productive environment may induce vole outbreaks. During fall and winter, variability of female vole reproduction is mainly controlled by intrinsic factors, with high population density suppressing reproduction. This suggests, in this cyclic population, that negative direct density dependence on reproduction could explain winter declines after outbreaks.


Assuntos
Arvicolinae/fisiologia , Fertilidade , Reprodução , Estações do Ano , Animais , Tamanho Corporal , Feminino , França , Herbivoria , Modelos Biológicos , Densidade Demográfica
8.
J Econ Entomol ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940378

RESUMO

Dicaffeoyltartaric acid (diCT) and 3,5-dicaffeoylquinic acid (3,5-diCQ) are described for their aphicidal properties on several aphid species. Intending to valorize diCT and 3,5-diCQ as biocontrol products and because of the high adaptive capacities of aphids to xenobiotics, we sought to determine the existence of adaptation first in Myzus persicae (Sulzer) (Hemiptera: Aphididae) and then other aphids. Resistance of aphids to these biopesticides could be promoted by (i) the existence of resistance to synthetic insecticides that may confer cross-resistance and (ii) the presence of these compounds in wild plants likely which may have led to pre-existing adaptation in aphids. We assessed the resistance levels to diCT and 3,5-diCQ in 7 lab strains (including some resistant to synthetic aphicides) and 7 wild populations of M. persicae using biotests. The activities of detoxification enzymes contributing to insecticide resistance were also measured. Additionally, we followed the same method to characterize susceptibility to these caffeic derivatives in wild populations of Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae), Brevicoryne brassicae  (Linnaeus) (Hemiptera: Aphididae) and, Aphis craccivora  (Koch) (Hemiptera: Aphididae). Our results show variability in susceptibility to diCT between populations of M. persicae, but resistance ratios (RR) were low (RR = 3.59). We found no cross-resistance between synthetic insecticides and diCT. Carboxylesterase and glutathione-S-transferase did not seem to be involved in its detoxification. A clone of A. craccivora collected from peanut, a species rich in diCT, was not susceptible to either diCT or 3,5-diCQ, suggesting a common molecular target for these 2 molecules and the existence of a high-effect resistance mechanism. These active botanical substances remain good candidates for M. persicae biocontrol in agriculture.

9.
Pest Manag Sci ; 75(3): 667-675, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30105772

RESUMO

BACKGROUND: The pollen beetle, Brassicogethes aeneus (Fabricius, 1775), is one of the most significant pests of oilseed rape. To shed light on past and current pollen beetle demography (dispersal, population size), 12 microsatellite markers were developed, and population genetic diversity and structure were analysed at different spatial scales in France and in Europe from 433 individuals collected in 18 winter oilseed rape fields. RESULTS: Genetic differentiation among the population samples was low but was significant between the Estonian sample and the rest of Europe. Isolation by distance was significant only at the European scale. Genetic variability was similar among the 18 population samples. Demographic inferences suggested a recent expansion of B. aeneus population size over Europe, possibly corresponding to an increase in oilseed rape crop area during past decades. CONCLUSION: Current population size and dispersal are not straightforward to estimate from the distribution of genetic variability in B. aeneus over Europe because of the complexity of the demographic history of this pest. Nevertheless, because gene flow was important enough to prevent strong genetic differentiation at large geographical scales, the management of pollen beetle populations should likely be thought of at a continental Europe level. © 2018 Society of Chemical Industry.


Assuntos
Distribuição Animal , Besouros/genética , Genética Populacional , Animais , Europa (Continente) , França , Variação Genética , Repetições de Microssatélites , Análise de Sequência de DNA
10.
Data Brief ; 19: 1310-1313, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30225290

RESUMO

Understanding the response of biodiversity to management, land use and climate change is a major challenge in farmland to halt the decline of biodiversity. Farmlands shelter a wide variety of taxa, which vary in their life cycle and habitat niches. Consequently, monitoring biodiversity from sessile annual plants to migratory birds requires dedicated protocols. In this article, we describe the protocols applied in a long-term research platform, the LTSER Zone Atelier "Plaine & Val de Sèvre" (for a full description see Bretagnolle et al. (2018) [1]). We present the data in the form of the description of monitoring protocols, which has evolved through time for arable weeds, grassland plants, ground beetles, spiders, grasshoppers, wild bees, hoverflies, butterflies, small mammals, and farmland birds (passerines, owls and various flagship species).

11.
Sci Total Environ ; 627: 822-834, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29426207

RESUMO

Agriculture is currently facing unprecedented challenges: ensuring food, fiber and energy production in the face of global change, maintaining the economic performance of farmers and preserving natural resources such as biodiversity and associated key ecosystem services for sustainable agriculture. Addressing these challenges requires innovative landscape scale farming systems that account for changing economic and environmental targets. These novel agricultural systems need to be recognized, accepted and promoted by all stakeholders, including local residents, and supported by public policies. Agroecosystems should be considered as socio-ecological systems and alternative farming systems should be based on ecological principles while taking societal needs into account. This requires an in-depth knowledge of the multiple interactions between sociological and ecological dynamics. Long Term Socio-Ecological Research platforms (LTSER) are ideal for acquiring this knowledge as they (i) are not constrained by traditional disciplinary boundaries, (ii) operate at a large spatial scale involving all stakeholders, and (iii) use systemic approaches to investigate biodiversity and ecosystem services. This study presents the socio-ecological research strategy from the LTSER "Zone Atelier Plaine & Val de Sèvre" (ZA PVS), a large study area where data has been sampled since 1994. Its global aim is to identify effective solutions for agricultural development and the conservation of biodiversity in farmlands. Three main objectives are targeted by the ZAPVS. The first objective is intensive monitoring of landscape features, the main taxa present and agricultural practices. The second objective is the experimental investigation, in real fields with local farmers, of important ecosystem functions and services, in relation to pesticide use, crop production and farming socio-economic value. The third aim is to involve stakeholders through participatory research, citizen science and the dissemination of scientific results. This paper underlines the relevance of LTSERs for addressing agricultural challenges, while acknowledging that there are some yet unsolved key challenges.

12.
Infect Genet Evol ; 49: 318-329, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27956196

RESUMO

Understanding how host dynamics, including variations of population size and dispersal, may affect the epidemiology of infectious diseases through ecological and evolutionary processes is an active research area. Here we focus on a bank vole (Myodes glareolus) metapopulation surveyed in Finland between 2005 and 2009. Bank vole is the reservoir of Puumala hantavirus (PUUV), the agent of nephropathia epidemica (NE, a mild form of hemorrhagic fever with renal symptom) in humans. M. glareolus populations experience multiannual density fluctuations that may influence the level of genetic diversity maintained in bank voles, PUUV prevalence and NE occurrence. We examine bank vole metapopulation genetics at presumably neutral markers and immune-related genes involved in susceptibility to PUUV (Tnf-promoter, Tlr4, Tlr7 and Mx2 gene) to investigate the links between population dynamics, microevolutionary processes and PUUV epidemiology. We show that genetic drift slightly and transiently affects neutral and adaptive genetic variability within the metapopulation. Gene flow seems to counterbalance its effects during the multiannual density fluctuations. The low abundance phase may therefore be too short to impact genetic variation in the host, and consequently viral genetic diversity. Environmental heterogeneity does not seem to affect vole gene flow, which might explain the absence of spatial structure previously detected in PUUV in this area. Besides, our results suggest the role of vole dispersal on PUUV circulation through sex-specific and density-dependent movements. We find little evidence of selection acting on immune-related genes within this metapopulation. Footprint of positive selection is detected at Tlr-4 gene in 2008 only. We observe marginally significant associations between Mx2 genotype and PUUV genogroups. These results show that neutral processes seem to be the main factors affecting the evolution of these immune-related genes at a contemporary scale, although the relative effects of neutral and adaptive forces could vary temporally with density fluctuations. Immune related gene polymorphism may in turn partly influence PUUV epidemiology in this metapopulation.


Assuntos
Arvicolinae/virologia , Reservatórios de Doenças/virologia , Expressão Gênica/imunologia , Febre Hemorrágica com Síndrome Renal/veterinária , Interações Hospedeiro-Patógeno , Doenças dos Roedores/epidemiologia , Animais , Arvicolinae/imunologia , Evolução Biológica , Suscetibilidade a Doenças , Feminino , Finlândia/epidemiologia , Fluxo Gênico , Deriva Genética , Febre Hemorrágica com Síndrome Renal/epidemiologia , Febre Hemorrágica com Síndrome Renal/genética , Febre Hemorrágica com Síndrome Renal/imunologia , Humanos , Masculino , Epidemiologia Molecular , Proteínas de Resistência a Myxovirus/genética , Proteínas de Resistência a Myxovirus/imunologia , Polimorfismo Genético , Dinâmica Populacional , Virus Puumala/crescimento & desenvolvimento , Virus Puumala/patogenicidade , Doenças dos Roedores/genética , Doenças dos Roedores/imunologia , Doenças dos Roedores/virologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/imunologia
13.
PLoS One ; 8(9): e72997, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24023799

RESUMO

Winter ecology of natural enemies has a great influence on the level and efficiency of biological control at spring. The hoverfly Episyrphus balteatus (DeGeer) (Diptera: Syrphidae) is one of the most important natural predators of crop aphids in Europe. Three different overwintering strategies coexist in this species which makes it a good model in order to study ecologically-based speciation processes. The purpose of this study was to determine whether E. balteatus populations with alternative overwintering strategies are genetically differentiated. To that aim, we developed 12 specific microsatellite markers and evaluated the level of neutral genetic differentiation between E. balteatus field populations that overwinter in the three different ways described in this species (i.e. migration, local overwintering at a pre-imaginal stage, and local overwintering at adult stage). Results showed a lack of neutral genetic differentiation between individuals with different overwintering strategies although there are strong ecological differences between them. All pair-wise FST values are below 0.025 and non-significant, and Bayesian clustering showed K=1 was the most likely number of genetic clusters throughout our sample. The three overwintering strategies form one unique panmictic population. This suggests that all the individuals may have genetic material for the expression of different overwintering phenotypes, and that their commitment in one particular overwintering strategy may depend on environmental and individual factors. Consequently, the prevalence of the different overwintering strategies would be potentially modified by landscape engineering and habitat management which could have major implications for biological control.


Assuntos
Dípteros/fisiologia , Controle Biológico de Vetores/métodos , Animais , Afídeos , Dípteros/genética , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA