Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Carcinogenesis ; 35(10): 2331-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25031272

RESUMO

Recently, we found upregulation of fibroblast growth factor receptor 4 (FGFR4) in a subset of hepatocellular carcinoma (HCC). Here, we provide mechanistic insight into the role of FGFR4-mediated signalling for the aggressive behaviour of HCC cells. To overexpress FGFR4, hepatoma/hepatocarcinoma cells were transfected with a construct coding for FGFR4. For downmodulation of endogenous FGFR4, we used small interfering RNA or adenoviral infection with dominant-negative FGFR4 constructs being either kinase dead (kdFGFR4) or coding for the autoinhibitory soluble domain (solFGFR4). FGFR4 overexpression in non-tumourigenic hepatocarcinoma cells significantly reduced cell-matrix adhesion, enabled cells to grow anchorage-independently in soft agar, to disintegrate the lymph-/blood-endothelial barrier for intra-/extravasation of tumour cells and to form tumours in SCID mice. Transcriptome analysis revealed altered expression of genes involved in cell-matrix interactions. Conversely, in highly tumourigenic cell lines, kdFGFR4 or solFGFR4 lowered the proportion of cells in S phase of the cell cycle, enhanced the G0/G1 and G2/M-phase proportions, reduced anchorage-independent growth in vitro and attenuated disintegration of the lymph-/blood-endothelium and tumour formation in vivo. These findings were confirmed by altered expression profiles of genes being important for late stages of cell division. Deregulated FGFR4 expression appears to be one of the key drivers of the malignant phenotype of HCC cells. Accordingly, blockade of FGFR4-mediated signalling by soluble dominant-negative constructs, like solFGFR4, may be a feasible and promising therapeutic approach to antagonize aggressive behaviour of hepatoma/hepatocarcinoma cells.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais/genética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Hepatology ; 53(3): 854-64, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21319186

RESUMO

UNLABELLED: Fibroblast growth factors (FGFs) and their high-affinity receptors [fibroblast growth factor receptors (FGFRs)] contribute to autocrine and paracrine growth stimulation in several non-liver cancer entities. Here we report that at least one member of the FGF8 subfamily (FGF8, FGF17, and FGF18) was up-regulated in 59% of 34 human hepatocellular carcinoma (HCC) samples that we investigated. The levels of the corresponding receptors (FGFR2, FGFR3, and FGFR4) were also elevated in the great majority of the HCC cases. Overall, 82% of the HCC cases showed overexpression of at least one FGF and/or FGFR. The functional implications of the deregulated FGF/FGFR system were investigated by the simulation of an insufficient blood supply. When HCC-1.2, HepG2, or Hep3B cells were subjected to serum withdrawal or the hypoxia-mimetic drug deferoxamine mesylate, the expression of FGF8 subfamily members increased dramatically. In the serum-starved cells, the incidence of apoptosis was elevated, whereas the addition of FGF8, FGF17, or FGF18 impaired apoptosis, which was associated with phosphorylation of extracellular signal-regulated kinase 1/2 and ribosomal protein S6. In contrast, down-modulation of FGF18 by small interfering RNA (siRNA) significantly reduced the viability of the hepatocarcinoma cells. siRNA targeting FGF18 also impaired the cells' potential to form clones at a low cell density or in soft agar. With respect to the tumor microenvironment, FGF17 and FGF18 stimulated the growth of HCC-derived myofibroblasts, and FGF8, FGF17, and FGF18 induced the proliferation and tube formation of hepatic endothelial cells. CONCLUSION: FGF8, FGF17, and FGF18 are involved in autocrine and paracrine signaling in HCC and enhance the survival of tumor cells under stress conditions, malignant behavior, and neoangiogenesis. Thus, the FGF8 subfamily supports the development and progression of hepatocellular malignancy.


Assuntos
Carcinoma Hepatocelular/genética , Fator 8 de Crescimento de Fibroblasto/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Neoplasias Hepáticas/genética , Neovascularização Patológica/genética , Receptores de Fatores de Crescimento de Fibroblastos/biossíntese , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Humanos , Hipóxia/fisiopatologia , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Ratos , Microambiente Tumoral , Regulação para Cima
3.
Mol Cancer Ther ; 7(10): 3408-19, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18852144

RESUMO

Fibroblast growth factors (FGF) and their high-affinity receptors (FGFR) represent an extensive cellular growth and survival system. Aim of this study was to evaluate the contribution of FGF/FGFR-mediated signals to the malignant growth of non-small cell lung cancer (NSCLC) and to assess their potential as targets for therapeutic interventions. Multiple FGFR mRNA splice variants were coexpressed in NSCLC cells (n = 16) with predominance of FGFR1. Accordingly, both expression of a dominant-negative FGFR1 (dnFGFR1) IIIc-green fluorescent protein fusion protein and application of FGFR small-molecule inhibitors (SU5402 and PD166866) significantly reduced growth, survival, clonogenicity, and migratory potential of the majority of NSCLC cell lines. Moreover, dnFGFR1 expression completely blocked or at least significantly attenuated s.c. tumor formation of NSCLC cells in severe combined immunodeficient mice. Xenograft tumors expressing dnFGFR1 exhibited significantly reduced size and mitosis rate, enhanced cell death, and decreased tissue invasion. When FGFR inhibitors were combined with chemotherapy, antagonistic to synergistic in vitro anticancer activities were obtained depending on the application schedule. In contrast, simultaneous blockage of FGFR- and epidermal growth factor receptor-mediated signals exerted synergistic effects. In summary, FGFR-mediated signals in cooperation with those transmitted by epidermal growth factor receptor are involved in growth and survival of human NSCLC cells and should be considered as targets for combined therapeutic approaches.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Receptores ErbB/antagonistas & inibidores , Neoplasias Pulmonares/terapia , Inibidores de Proteínas Quinases/farmacologia , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Processamento Alternativo/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Genes Dominantes , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos SCID , Fenótipo , RNA Mensageiro , Receptores de Fatores de Crescimento de Fibroblastos/genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cancer Res ; 72(22): 5767-77, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22971346

RESUMO

A gly(388)arg polymorphism (rs351855) in the transmembrane domain of the fibroblast growth factor receptor (FGFR4) is associated with increased risk, staging, and metastasis in several different types of cancer. To specifically assess the impact of the polymorphic FGFR4 in colorectal cancer (CRC), we engineered CRC cell lines with distinct endogenous expression patterns to overexpress either the FGFR4(gly) or FGFR4(arg) alleles. The biologic analyses revealed an oncogenic importance for both polymorphic alleles, but FGFR4(gly) was the stronger inducer of tumor growth, whereas FGFR4(arg) was the stronger inducer of migration. An evaluation of clinical specimens revealed that FGFR4 was upregulated in 20/71 patients independent of gly(388)arg status. There was no correlation between the presence of an FGFR4(arg) allele and CRC or polyp risk in 3,471 participants of the CORSA study. However, among 182 patients with CRC, FGFR4(arg)-carriers had a fivefold higher risk of tumors that were stage II or greater. Together, our results established that both allelic forms of FGFR4 exert an oncogenic impact and may serve equally well as therapeutic targets in CRC. One important implication of our findings is that FGFR4(arg)-carriers are at a higher risk for more aggressive tumors and therefore may profit from early detection measures.


Assuntos
Alelos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Idoso , Idoso de 80 Anos ou mais , Células CACO-2 , Processos de Crescimento Celular/genética , Neoplasias Colorretais/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Genótipo , Células HCT116 , Células HT29 , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Polimorfismo de Nucleotídeo Único , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/biossíntese
5.
Cancer Res ; 69(1): 235-42, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19118008

RESUMO

Recently, we found epigenetic silencing of the Ras effector genes NORE1B and/or RASSF1A in 97% of the hepatocellular carcinoma (HCC) investigated. This is strong evidence that the two genes are of major significance in hepatocarcinogenesis. Although RASSF1A serves as a tumor suppressor gene, the functions of NORE1B are largely unknown. Here, we studied the role of NORE1B for growth and transformation of cells. To understand the molecular mechanisms of action of the gene, we used the wild-type form and deletion mutants without the NH(2) terminus and CENTRAL domain, the Ras association (RA) domain, or the COOH-terminal SARAH-domain. Intact RA and SARAH-domains were found to be necessary for NORE1B (a) to increase the G(0)-G(1) fraction in hepatoma cells, (b) to suppress c-Myc/Ha-Ras-induced cell transformation, and (c) to interact closely with RASSF1A, as determined with fluorescence resonance energy transfer. In further studies, cell cycle delay by NORE1B was equally effective in hepatocyte cell lines with wild-type or mutant Ras suggesting that NORE1B does not interact with either Ras. In conclusion, NORE1B suppresses replication and transformation of cells as effectively as RASSF1A and thus is a putative tumor suppressor gene. NORE1B interacts physically with RASSF1A and functional loss of one of the interacting partners may lead to uncontrolled growth and transformation of hepatocytes. This may explain the frequent epigenetic silencing of NORE1B and/or RASSF1A in HCC.


Assuntos
Carcinoma Hepatocelular/genética , Transformação Celular Neoplásica/genética , Neoplasias Hepáticas/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Supressoras de Tumor/genética , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Ciclo Celular/genética , Processos de Crescimento Celular/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Citoplasma/metabolismo , Deleção de Genes , Inativação Gênica , Genes Supressores de Tumor , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , RNA Interferente Pequeno/genética , Transfecção , Proteínas Supressoras de Tumor/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA