Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885696

RESUMO

Harnessing genetic diversity in major staple crops through the development of new breeding capabilities is essential to ensure food security1. Here we examined the genetic and phenotypic diversity of the A.E. Watkins landrace collection2 of bread wheat (Triticum aestivum), a major global cereal, through whole-genome re-sequencing (827 Watkins landraces and 208 modern cultivars) and in-depth field evaluation spanning a decade. We discovered that modern cultivars are derived from just two of the seven ancestral groups of wheat and maintain very long-range haplotype integrity. The remaining five groups represent untapped genetic sources, providing access to landrace-specific alleles and haplotypes for breeding. Linkage disequilibrium (LD) based haplotypes and association genetics analyses link Watkins genomes to the thousands of high-resolution quantitative trait loci (QTL), and significant marker-trait associations identified. Using these structured germplasm, genotyping and informatics resources, we revealed many Watkins-unique beneficial haplotypes that can confer superior traits in modern wheat. Furthermore, we assessed the phenotypic effects of 44,338 Watkins-unique haplotypes, introgressed from 143 prioritised QTL in the context of modern cultivars, bridging the gap between landrace diversity and current breeding. This study establishes a framework for systematically utilising genetic diversity in crop improvement to achieve sustainable food security.

2.
New Phytol ; 229(2): 1163-1176, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32909250

RESUMO

Flowering is regulated by genes that respond to changing daylengths and temperature, which have been well studied using controlled conditions; however, the molecular processes underpinning flowering in nature remain poorly understood. Here, we investigate the genetic pathways that coordinate flowering and inflorescence development of wheat (Triticum aestivum) as daylengths extend naturally in the field, using lines that contain variant alleles for the key photoperiod gene, Photoperiod-1 (Ppd-1). We found flowering involves a stepwise increase in the expression of FLOWERING LOCUS T1 (FT1), which initiates under day-neutral conditions of early spring. The incremental rise in FT1 expression is overridden in plants that contain a photoperiod-insensitive allele of Ppd-1, which hastens the completion of spikelet development and accelerates flowering time. The accelerated inflorescence development of photoperiod-insensitive lines is promoted by advanced seasonal expression of floral meristem identity genes. The completion of spikelet formation is promoted by FLOWERING LOCUS T2, which regulates spikelet number and is activated by Ppd-1. In wheat, flowering under natural photoperiods is regulated by stepwise increases in the expression of FT1, which responds dynamically to extending daylengths to promote early inflorescence development. This research provides a strong foundation to improve yield potential by fine-tuning the photoperiod-dependent control of inflorescence development.


Assuntos
Fotoperíodo , Triticum , Alelos , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estações do Ano , Triticum/genética , Triticum/metabolismo
3.
J Integr Plant Biol ; 61(3): 296-309, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30325110

RESUMO

Modifications of inflorescence architecture have been crucial for the successful domestication of wheat and barley, which are central members of the Triticeae tribe that provide essential grains for the human diet. Investigation of the genes and alleles that underpin domestication-related traits has provided valuable insights into the molecular regulation of inflorescence development of the Triticeae, and further investigation of modified forms of architecture are proving to be equally fruitful. The identified genes are involved in diverse biological processes, including transcriptional regulation, hormone biosynthesis and metabolism, post-transcriptional and post-translational regulation, which alter inflorescence architecture by modifying the development and fertility of lateral organs, called spikelets and florets. Recent advances in sequencing capabilities and the generation of mutant populations are accelerating the identification of genes that influence inflorescence development, which is important given that genetic variation for this trait promises to be a valuable resource for optimizing grain production. This review assesses recent advances in our understanding of the genes controlling inflorescence development in wheat and barley, with the aim of highlighting the importance of improvements in developmental biology for optimizing the agronomic performance of staple crop plants.


Assuntos
Hordeum/anatomia & histologia , Hordeum/genética , Inflorescência/genética , Triticum/anatomia & histologia , Triticum/genética , Sequência de Bases , Domesticação , Genes de Plantas , Fenótipo
4.
Curr Biol ; 34(11): 2330-2343.e4, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38781956

RESUMO

Photoperiod insensitivity has been selected by breeders to help adapt crops to diverse environments and farming practices. In wheat, insensitive alleles of Photoperiod-1 (Ppd-1) relieve the requirement of long daylengths to flower by promoting expression of floral promoting genes early in the season; however, these alleles also limit yield by reducing the number and fertility of grain-producing florets through processes that are poorly understood. Here, we performed transcriptome analysis of the developing inflorescence using near-isogenic lines that contain either photoperiod-insensitive or null alleles of Ppd-1, during stages when spikelet number is determined and floret development initiates. We report that Ppd-1 influences the stage-specific expression of genes with roles in auxin signaling, meristem identity, and protein turnover, and analysis of differentially expressed transcripts identified bZIP and ALOG transcription factors, namely PDB1 and ALOG1, which regulate flowering time and spikelet architecture. These findings enhance our understanding of genes that regulate inflorescence development and introduce new targets for improving yield potential.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Inflorescência , Fotoperíodo , Proteínas de Plantas , Transcriptoma , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Inflorescência/genética , Inflorescência/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/crescimento & desenvolvimento , Flores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA