RESUMO
Reliable and consistent preparation of atom probe tomography (APT) specimens from aqueous and hydrated biological specimens remains a significant challenge. One particularly difficult process step is the use of a focused ion beam (FIB) instrument for preparing the required needle-shaped specimen, typically involving a 'lift-out' procedure of a small sample of material. Here, two alternative substrate designs are introduced that enable using FIB only for sharpening, along with example APT datasets. The first design is a laser-cut FIB-style half-grid close to those used for transmission electron microscopy (TEM) that can be used in a grid holder compatible with APT pucks. The second design is a larger, standalone self-supporting substrate called a 'crown', with several specimen positions, which self-aligns in APT pucks, prepared by electrical discharge machining (EDM). Both designs are made nanoporous, to provide strength to the liquid-substrate interface, using chemical and vacuum dealloying. Alpha brass, a simple, widely available, lower-cost alternative to previously proposed substrates, was selected for this work. The resulting designs and APT data are presented and suggestions are provided to help drive wider community adoption.
RESUMO
The enormous magnitude of 2 billion tons of alloys produced per year demands a change in design philosophy to make materials environmentally, economically, and socially more sustainable. This disqualifies the use of critical elements that are rare or have questionable origin. Amongst the major alloy strengthening mechanisms, a high-dispersion of second-phase precipitates with sizes in the nanometre range is particularly effective for achieving ultra-high strength. Here, we propose an alternative segregation-based strategy for sustainable steels, free of critical elements, which are rendered ultrastrong by second-phase nano-precipitation. We increase the Mn-content in a supersaturated, metastable Fe-Mn solid solution to trigger compositional fluctuations and nano-segregation in the bulk. These fluctuations act as precursors for the nucleation of an unexpected α-Mn phase, which impedes dislocation motion, thus enabling precipitation strengthening. Our steel outperforms most common commercial alloys, yet it is free of critical elements, making it a new platform for sustainable alloy design.
RESUMO
Local fluctuations in the distribution of dopant atoms are thought to cause the nanoscale electronic disorder or phase separation in pnictide superconductors. Atom probe tomography has enabled the first direct observations of dopant species clustering in a K-doped 122-phase pnictide. First-principles calculations suggest the coexistence of static magnetism and superconductivity on a lattice parameter length scale over a wide range of dopant concentrations. Our results provide evidence for a mixed scenario of phase coexistence and phase separation, depending on local dopant atom distributions.
RESUMO
The local variation of grain boundary atomic structure and chemistry caused by segregation of impurities influences the macroscopic properties of polycrystalline materials. Here, the effect of co-segregation of carbon and boron on the depletion of aluminum at a Σ5 (3 1 0 )[0 0 1] tilt grain boundary in a α - Fe-4 at%Al bicrystal is studied by combining atomic resolution scanning transmission electron microscopy, atom probe tomography and density functional theory calculations. The atomic grain boundary structural units mostly resemble kite-type motifs and the structure appears disrupted by atomic scale defects. Atom probe tomography reveals that carbon and boron impurities are co-segregating to the grain boundary reaching levels of >1.5 at%, whereas aluminum is locally depleted by approx. 2 at.%. First-principles calculations indicate that carbon and boron exhibit the strongest segregation tendency and their repulsive interaction with aluminum promotes its depletion from the grain boundary. It is also predicted that substitutional segregation of boron atoms may contribute to local distortions of the kite-type structural units. These results suggest that the co-segregation and interaction of interstitial impurities with substitutional solutes strongly influences grain boundary composition and with this the properties of the interface.
RESUMO
Dislocations are one-dimensional defects in crystals, enabling their deformation, mechanical response, and transport properties. Less well known is their influence on material chemistry. The severe lattice distortion at these defects drives solute segregation to them, resulting in strong, localized spatial variations in chemistry that determine microstructure and material behavior. Recent advances in atomic-scale characterization methods have made it possible to quantitatively resolve defect types and segregation chemistry. As shown here for a Pt-Au model alloy, we observe a wide range of defect-specific solute (Au) decoration patterns of much greater variety and complexity than expected from the Cottrell cloud picture. The solute decoration of the dislocations can be up to half an order of magnitude higher than expected from classical theory, and the differences are determined by their structure, mutual alignment, and distortion field. This opens up pathways to use dislocations for the compositional and structural nanoscale design of advanced materials.
RESUMO
Atom Probe Tomography (APT) is currently a well-established technique to analyse the composition of solid materials including metals, semiconductors and ceramics with up to near-atomic resolution. Using an aqueous glucose solution, we now extended the technique to frozen solutions. While the mass signals of the common glucose fragments CxHy and CxOyHz overlap with (H2O)nH from water, we achieved stoichiometrically correct values via signal deconvolution. Density functional theory (DFT) calculations were performed to investigate the stability of the detected pyranose fragments. This paper demonstrates APT's capabilities to achieve sub-nanometre resolution in tracing whole glucose molecules in a frozen solution by using cryogenic workflows. We use a solution of defined concentration to investigate the chemical resolution capabilities as a step toward the measurement of biological molecules. Due to the evaporation of nearly intact glucose molecules, their position within the measured 3D volume of the solution can be determined with sub-nanometre resolution. Our analyses take analytical techniques to a new level, since chemical characterization methods for cryogenically-frozen solutions or biological materials are limited.
RESUMO
Site-specific atom probe tomography (APT) from aluminum alloys has been limited by sample preparation issues. Indeed, Ga, which is conventionally used in focused-ion beam (FIB) preparations, has a high affinity for Al grain boundaries and causes their embrittlement. This leads to high concentrations of Ga at grain boundaries after specimen preparation, unreliable compositional analyses and low specimen yield. Here, to tackle this problem, we propose to use cryo-FIB for APT specimen preparation specifically from grain boundaries in a commercial Al-alloy. We demonstrate how this setup, easily implementable on conventional Ga-FIB instruments, is efficient to prevent Ga diffusion to grain boundaries. Specimens were prepared at room temperature and at cryogenic temperature (below approx. 90K) are compared, and we confirm that at room temperature, a compositional enrichment above 15 at.% of Ga is found at the grain boundary, whereas no enrichment could be detected for the cryo-prepared sample. We propose that this is due to the decrease of the diffusion rate of Ga at low temperature. The present results could have a high impact on the understanding of aluminum and Al-alloys.
Assuntos
Ligas/química , Alumínio/química , Tomografia/métodos , Gálio/química , Íons , TemperaturaRESUMO
Transmission electron microscopy went through a revolution enabling routine cryo-imaging of biological and (bio)chemical systems, in liquid form. Yet, these approaches typically lack advanced analytical capabilities. Here, we used atom probe tomography to analyze frozen liquids in three dimensions with subnanometer resolution. We introduce a specimen preparation strategy using nanoporous gold. We report data on 2- to 3-µm-thick layers of ice formed from both high-purity deuterated water and a solution of 50 mM NaCl in high-purity deuterated water. The analysis of the gold-ice interface reveals a substantial increase in the solute concentrations across the interface. We explore a range of experimental parameters to show that atom probe analyses of bulk aqueous specimens come with their own challenges and discuss physical processes that produce the observed phenomena. Our study demonstrates the viability of using frozen water as a carrier for near-atomic-scale analysis of objects in solution by atom probe tomography.
RESUMO
The spatial correlation between defects in crystalline materials and trace element segregation plays a fundamental role in determining the physical and mechanical properties of a material, which is particularly important in naturally deformed materials. Herein, we combine electron backscatter diffraction, electron channelling contrast imaging, scanning transmission electron microscopy and atom probe tomography on a naturally occurring metal sulphide in an attempt to document mechanisms of element segregation in a brittle-dominated deformation regime. Within APT reconstructions, features with a high point density comprising O-rich discs stacked over As-rich spherules are observed. The combined microscopy data allow us to interpret these as nanoscale fluid inclusions. Our observations are confirmed by simulated APT experiments of core-shell particles with a core exhibiting a very low evaporation field and the shell emulating a segregated layer at the inclusion interface. Our data has significant trans-disciplinary implications to the geosciences, the material sciences, and analytical microscopy.
RESUMO
Analysis and design of materials and fluids requires understanding of the fundamental relationships between structure, composition, and properties. Dislocations and grain boundaries influence microstructure evolution through the enhancement of diffusion and by facilitating heterogeneous nucleation, where atoms must overcome a potential barrier to enable the early stage of formation of a phase. Adsorption and spinodal decomposition are known precursor states to nucleation and phase transition; however, nucleation remains the less well-understood step in the complete thermodynamic sequence that shapes a microstructure. Here, we report near-atomic-scale observations of a phase transition mechanism that consists in solute adsorption to crystalline defects followed by linear and planar spinodal fluctuations in an Fe-Mn model alloy. These fluctuations provide a pathway for austenite nucleation due to the higher driving force for phase transition in the solute-rich regions. Our observations are supported by thermodynamic calculations, which predict the possibility of spinodal decomposition due to magnetic ordering.
RESUMO
In the interaction between ultrafast laser pulses and a field emitter both optical and thermal processes are involved. In this paper, these physical process, and their timescales, are experimentally explored. Simple models are proposed to explain the observed experimental behaviour, and the influence of various parameters are investigated. In the case of optical processes, it is shown that the optical field is greatly enhanced at the tip apex, and that field evaporation could be induced by an optical non-linear effect called optical rectification. In the case of thermal processes, it is shown that the temperature rise because of light absorption can be determined and that the cooling process of the tip surface can be studied by pump probe measurements.
RESUMO
Manipulating structure, defects and composition of a material at the atomic scale for enhancing its physical or mechanical properties is referred to as nanostructuring. Here, by combining advanced microscopy techniques, we unveil how formation of highly regular nano-arrays of nanoparticles doubles the strength of an Fe-based alloy, doped with Ti, Mo, and V, from 500 MPa to 1 GPa, upon prolonged heat treatment. The nanoparticles form at moving heterophase interfaces during cooling from the high-temperature face-centered cubic austenite to the body-centered cubic ferrite phase. We observe MoC and TiC nanoparticles at early precipitation stages as well as core-shell nanoparticles with a Ti-C rich core and a Mo-V rich shell at later precipitation stages. The core-shell structure hampers particle coarsening, enhancing the material's strength. Designing such highly organized metallic core-shell nanoparticle arrays provides a new pathway for developing a wide range of stable nano-architectured engineering metallic alloys with drastically enhanced properties.
RESUMO
This article, based on data from the Commonwealth Fund 1998 Survey of Women's Health, examines the relationship between socioeconomic status (SES) and women's health. Women living in poverty are less likely than their higher-income counterparts to have health insurance and use preventive services, and more likely to have access problems, suffer from chronic illnesses, and report low overall health scores. Women with low educational attainment are also less likely to have health insurance and to use preventive services, and more likely to report poorer health status than women with a college education. We conclude with implications for public policy.
Assuntos
Nível de Saúde , Classe Social , Saúde da Mulher , Adulto , Idoso , Idoso de 80 Anos ou mais , Educação , Emprego , Feminino , Acessibilidade aos Serviços de Saúde , Inquéritos Epidemiológicos , Humanos , Renda , Pessoa de Meia-Idade , Pobreza , Estados UnidosRESUMO
The concepts of collaboration and partnership currently have extensive impact upon health care providers and higher education institutions. One of the challenges is to develop networks which will foster partnerships able to react, and contribute, to an ever-evolving educational culture. These themes are illustrated by using the example of one school of nursing and midwifery, and the collective experience of a number of its academic staff. By focusing on distinct features of collaboration (strategic planning, origins of change, group dynamics and building a community), the authors seek to explore the impact of an educational culture in an attempt to provide meaning to their recent experiences. In so doing, group identity is explored and the prospect for creating partnerships across disciplines ('similarities rather than differences') is considered.
Assuntos
Docentes de Enfermagem/organização & administração , Relações Interprofissionais , Cultura Organizacional , Processos Grupais , Humanos , Inovação Organizacional , EscóciaRESUMO
Due to their graphene-like properties after oxygen reduction, incorporation of graphene oxide (GO) sheets into correlated-electron materials offers a new pathway for tailoring their properties. Fabricating GO nanocomposites with polycrystalline MgB2 superconductors leads to an order of magnitude enhancement of the supercurrent at 5 K/8 T and 20 K/4 T. Herein, we introduce a novel experimental approach to overcome the formidable challenge of performing quantitative microscopy and microanalysis of such composites, so as to unveil how GO doping influences the structure and hence the material properties. Atom probe microscopy and electron microscopy were used to directly image the GO within the MgB2, and we combined these data with computational simulations to derive the property-enhancing mechanisms. Our results reveal synergetic effects of GO, namely, via localized atomic (carbon and oxygen) doping as well as texturing of the crystals, which provide both inter- and intra-granular flux pinning. This study opens up new insights into how low-dimensional nanostructures can be integrated into composites to modify the overall properties, using a methodology amenable to a wide range of applications.
RESUMO
Atom probe tomography uses time-of-flight mass spectrometry to identify the chemical nature of atoms from their mass-to-charge-state ratios. Within a mass spectrum, ranges are defined so as to attribute a chemical identity to each peak. The accuracy of atom probe microanalysis relies on the definition of these ranges. Here we propose and compare several automated ranging techniques, tested against simulated mass spectra. The performance of these metrics compare favourably with a trial of users asked to manually range a simplified simulated dataset. The optimised automated ranging procedure was then used to precisely evaluate the very low iron concentration (0.003-0.018 at%) in a zirconium alloy to reveal its behaviour in the matrix during corrosion; oxygen is injected into solution and has the effect of increasing the local iron concentration near the oxide-metal interface, which in turn affects the corrosion properties of the metal substrate.
RESUMO
A limiting characteristic of the atom-probe technique is the nondetection of ions and this embodies a significant "missing information" problem in investigations of atomic clustering phenomena causing difficulty in the interpretation of any atom-probe experiment. It is shown that the measurable cluster-size distribution can be modeled by a mixed binomial distribution. A deconvolution method based upon expectation-maximization (EM) algorithm is presented to obtain the original physical distribution from an efficiency-degraded distribution, thereby providing means to calculate accurate cluster number densities from atom probe results. The accuracy of this restoration was predominantly dependent upon the detector efficiency and was proved to be highly accurate in the case of conventional atom-probe detector efficiencies (ε = 57%). Such considerations and measures are absolutely necessary when the number density of clusters and small precipitates is in any way regarded as important. We conclude that limitations in detector efficiency are more limiting for cluster-finding analyses via atom-probe techniques than spatial resolution issues, and therefore the current endeavors for improving detector technologies are well found.
RESUMO
In-depth analysis of pulsed laser atom probe tomography (APT) data on the field evaporation of the III-V semiconductor material GaSb reveals strong variations in charge states, relative abundances of different cluster ions, multiplicity of detector events and spatial correlation of evaporation events, as a function of the effective electric field at the specimen surface. These variations are discussed in comparison with the behaviour of two different metallic specimen materials, an Al-6XXX series alloy and pure W, studied under closely related experimental conditions in the same atom probe instrument. It is proposed that the complex behaviour of GaSb originates from a combination of spatially correlated evaporation events and the subsequent field induced dissociation of cluster ions, the latter contributing to inaccuracies in the overall atom probe composition determination for this material.
RESUMO
Key to the integrity of atom probe microanalysis, the tomographic reconstruction is built atom by atom following a simplistic protocol established for previous generations of instruments. In this paper, after a short review of the main reconstruction protocols, we describe recent improvements originating from the use of exact formulae enabling significant reduction of spatial distortions, especially near the edges of the reconstruction. We also show how predictive values for the reconstruction parameters can be derived from electrostatic simulations, and finally introduce parameters varying throughout the analysis.
RESUMO
State-of-the art atom probe tomography (APT) combined with transmission electron microscopy (TEM) were used to investigate the microstructure at different stages of the ageing process of an alloy of composition (at%) Al-1.68%Cu-4.62%Li-0.33%Mg-0.1%Ag. These alloys were shown to exhibit a complex microstructure of T(1) plates and several metastable phases, including θ' and S. We will highlight the early stages of clustering, precipitate interactions and possible solute segregation at the matrix/precipitate interfaces and detail the chemical composition of the different phases.