Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Chemphyschem ; 25(12): e202400254, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38567647

RESUMO

The crystal structures of known materials contain the information about the interatomic interactions that produced these stable compounds. Similar to the use of reported protein structures to extract effective interactions between amino acids, that has been a useful tool in protein structure prediction, we demonstrate how to use this statistical paradigm to learn the effective inter-atomic interactions in crystalline inorganic solids. By analyzing the reported crystallographic data for inorganic materials, we have constructed statistically derived proxy potentials (SPPs) that can be used to assess how realistic or unusual a computer-generated structure is compared to the reported experimental structures. The SPPs can be directly used for structure optimization to improve this similarity metric, that we refer to as the SPP score. We apply such optimization step to markedly improve the quality of the input crystal structures for DFT calculations and demonstrate that the SPPs accelerate geometry optimization for three systems relevant to battery materials. As this approach is chemistry-agnostic and can be used at scale, we produced a database of all possible pair potentials in a tabulated form ready to use.

2.
J Chem Phys ; 160(5)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38341704

RESUMO

Computational exploration of the compositional spaces of materials can provide guidance for synthetic research and thus accelerate the discovery of novel materials. Most approaches employ high-throughput sampling and focus on reducing the time for energy evaluation for individual compositions, often at the cost of accuracy. Here, we present an alternative approach focusing on effective sampling of the compositional space. The learning algorithm PhaseBO optimizes the stoichiometry of the potential target material while improving the probability of and accelerating its discovery without compromising the accuracy of energy evaluation.

3.
Angew Chem Int Ed Engl ; 61(9): e202114573, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-34878706

RESUMO

The choice of metal and linker together define the structure and therefore the guest accessibility of a metal-organic framework (MOF), but the large number of possible metal-linker combinations makes the selection of components for synthesis challenging. We predict the guest accessibility of a MOF with 80.5 % certainty based solely on the identity of these two components as chosen by the experimentalist, by decomposing reported experimental three-dimensional MOF structures in the Cambridge Structural Database into metal and linker and then learning the connection between the components' chemistry and the MOF porosity. Pore dimensions of the guest-accessible space are classified into four ranges with three sequential models. Both the dataset and the predictive models are available to download and offer simple guidance in prioritization of the choice of the components for exploratory MOF synthesis for separation and catalysis based on guest accessibility considerations.

4.
J Am Chem Soc ; 143(47): 19668-19683, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34784470

RESUMO

The structures of Zr and Hf metal-organic frameworks (MOFs) are very sensitive to small changes in synthetic conditions. One key difference affecting the structure of UiO MOF phases is the shape and nuclearity of Zr or Hf metal clusters acting as nodes in the framework; although these clusters are crucial, their evolution during MOF synthesis is not fully understood. In this paper, we explore the nature of Hf metal clusters that form in different reaction solutions, including in a mixture of DMF, formic acid, and water. We show that the choice of solvent and reaction temperature in UiO MOF syntheses determines the cluster identity and hence the MOF structure. Using in situ X-ray pair distribution function measurements, we demonstrate that the evolution of different Hf cluster species can be tracked during UiO MOF synthesis, from solution stages to the full crystalline framework, and use our understanding to propose a formation mechanism for the hcp UiO-66(Hf) MOF, in which first the metal clusters aggregate from the M6 cluster (as in fcu UiO-66) to the hcp-characteristic M12 double cluster and, following this, the crystalline hcp framework forms. These insights pave the way toward rationally designing syntheses of as-yet unknown MOF structures, via tuning the synthesis conditions to select different cluster species.

5.
Angew Chem Int Ed Engl ; 60(52): 26939-26946, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34519411

RESUMO

We report a metal-organic framework where an ordered array of two linkers with differing length and geometry connect [Zr6 (OH)4 O4 ]12+ clusters into a twelve-connected fcu net that is rhombohedrally distorted from cubic symmetry. The ordered binding of equal numbers of terephthalate and fumarate ditopic carboxylate linkers at the trigonal antiprismatic Zr6 core creates close-packed layers of fumarate-connected clusters that are connected along the single remaining threefold axis by terephthalates. This well-defined linker arrangement retains the three-dimensional porosity of the Zr cluster-based UiO family while creating two distinct windows within the channels that define two distinct guest diffusion paths. The ordered material is accessed by a restricted combination of composition and process parameters that were identified by high-throughput synthesis.

6.
Angew Chem Int Ed Engl ; 60(30): 16457-16465, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-33951284

RESUMO

We report the aperiodic titanate Ba10 Y6 Ti4 O27 with a room-temperature thermal conductivity that equals the lowest reported for an oxide. The structure is characterised by discontinuous occupancy modulation of each of the sites and can be considered as a quasicrystal. The resulting localisation of lattice vibrations suppresses phonon transport of heat. This new lead material for low-thermal-conductivity oxides is metastable and located within a quaternary phase field that has been previously explored. Its isolation thus requires a precisely defined synthetic protocol. The necessary narrowing of the search space for experimental investigation was achieved by evaluation of titanate crystal chemistry, prediction of unexplored structural motifs that would favour synthetically accessible new compositions, and assessment of their properties with machine-learning models.

7.
J Am Chem Soc ; 141(33): 13089-13100, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31271033

RESUMO

Materials used as electrodes in energy storage devices have been extensively studied with solid-state NMR spectroscopy. Due to the almost ubiquitous presence of transition metals, these systems are also often magnetic. While it is well known that the presence of anisotropic bulk magnetic susceptibility (ABMS) leads to broadening of resonances under magic angle spinning, we show that for monodisperse and nonspherical particle morphologies the ABMS can also lead to considerable shifts, which vary substantially as a function of particle shape. This, on one hand, complicates the interpretation of the NMR spectrum and means that different samples of the same nominal material may no longer give rise to the same measured shift. On the other hand, the ABMS shift provides a mechanism with which to derive the particle shape from the NMR spectrum. In this work, we present a methodology to model the ABMS shift and relate it to the shape of the studied particles. The approach is tested on the 7Li NMR spectra of single crystals and powders of LiFePO4. The results show that the ABMS shift can be a major contribution to the total NMR shift in systems with large magnetic anisotropies and small hyperfine shifts, 7Li shifts for typical LiFePO4 morphologies varying by as much as 100 ppm. The results are generalized to demonstrate that the approach can be used as a means with which to probe the aspect ratio of particles. The work has implications for the analysis of NMR spectra of all materials with anisotropic magnetic susceptibilities, including diamagnetic materials such as graphite.

8.
Phys Chem Chem Phys ; 21(35): 19349-19358, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31453990

RESUMO

Developing new persistent luminescent phosphors, a unique class of inorganic materials that can produce a visible light emission lasting minutes to hours requires improving our understanding of their fundamental structure-property relationships. Research has shown that one of the most critical components governing persistent luminescence is the existence of lattice defects in a material. Specifically, vacancies and anti-site defects that coincide with substitution of the luminescent center, e.g., Eu2+ or Cr3+, are generally considered essential to generate the ultra-long luminescent lifetimes. This research solidifies the connection between defects and the remarkable optical properties. The persistent luminescent compound Zn(Ga1-xAlx)2O4 (x = 0-1), which adopts a spinel-type structure, is investigated by examining the X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine-structure (EXAFS) at the Cr K and Zn K edges. This investigation reveals a structural distortion of the octahedrally coordinated main group metal site concurrent with increasing Al3+ content. Moreover, these results suggest there is a dependence between the local crystallographic distortions, the presence of defects, and a material's persistent luminescence. In combination, this work provides an avenue to understand the connection between the structure-defect-property relationships that govern the properties of many functional inorganic materials.

9.
Angew Chem Int Ed Engl ; 58(2): 566-571, 2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30440102

RESUMO

There is an increasing amount of interest in metal-organic frameworks (MOFs) for a variety of applications, from gas sensing and separations to electronics and catalysis. However, the mechanisms by which they crystallize remain poorly understood. Herein, an important new insight into MOF formation is reported. It is shown that, prior to network assembly, crystallization intermediates in the canonical ZIF-8 system exist in a dynamic pre-equilibrium, which depends on the reactant concentrations and the progress of reaction. Concentration can, therefore, be used as a synthetic handle to directly control particle size, with potential implications for industrial scale-up and gas sorption applications. These findings enable the rationalization of apparent contradictions between previous studies of ZIF-8 and opens up new opportunities for the control of crystallization in network solids more generally.

10.
Chemistry ; 24(44): 11309-11313, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-29920832

RESUMO

Following the recent discovery of a new family of hybrid ABX3 perovskites where X=(H2 POO)- (hypophosphite), this work reports a facile synthesis for mixed X-site formate perovskites of composition [GUA]Mn(HCOO)3-x (H2 POO)x , with two crystallographically distinct, partially ordered intermediate phases with x=0.84 and 1.53, corresponding to ca. 30 and 50 mol % hypophosphite, respectively. These phases are characterised by single-crystal XRD and solid-state NMR spectroscopy, and their magnetic properties are reported.


Assuntos
Compostos de Cálcio/química , Formiatos/química , Compostos de Manganês/química , Óxidos/química , Ácidos Fosfínicos/química , Titânio/química , Cristalografia por Raios X , Ligantes , Imãs , Modelos Moleculares , Estrutura Molecular
11.
Inorg Chem ; 57(13): 7966-7974, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-29926728

RESUMO

There remain 21 systems (out of over 3500 possible combinations of the elements) in which the existence of the simple binary equiatomic phases AB has not been established experimentally. Among these, the presumed binary phase HfIn is predicted to adopt the tetragonal CuAu-type structure (space group P4/ mmm) by a recently developed machine-learning model and by structure optimization through global energy minimization. To test this prediction, the Hf-In system was investigated experimentally by reacting the elements in a 1:1 stoichiometry at 1070 K. Under the conditions investigated, the bulk and surface of the sample correspond to different crystalline phases but have nearly the same equiatomic composition, as revealed by energy-dispersive X-ray analysis. The structure of the bulk sample, which was solved from powder X-ray diffraction data through simulated annealing, corresponds to the γ-brass (Cu5Zn8) type (space group I4̅3 m) with Hf and In atoms disordered over four sites. The structure of crystals selected from the surface, which was solved using single-crystal X-ray diffraction data, corresponds to the CuPt7 type (space group Fm3̅ m) with Hf and In atoms partially disordered over three sites. The discrepancy between the predicted CuAu-type structure and the two experimentally refined crystal structures is reconciled through close inspection of structural relationships, which reveal that the γ-brass-type structure of the bulk HfIn phase is indeed derived through small distortions and defect formation within the CuAu-type structure.

12.
Phys Chem Chem Phys ; 20(30): 20088-20095, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30024004

RESUMO

Inspired by reports of redox active interphases in all-solid-state batteries employing fast conducting lithium thiophosphate solid-state electrolytes, we investigated the compositional depolymerization of interconnected PS4 tetrahedra in (Li2S)x(P2S5)100-x glasses (50 < x < 80) by X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS). Based on the observed energy shifts with composition, we present a structural model of the three different bonding types describing the structures of either crystalline or amorphous thiophosphates. This model and reference data characterizes amorphous thiophosphates based on their inter-tetrahedral connectivity and helps to distinguish malign decomposition reactions from reversible redox reactions at the cathode active material/solid-state electrolyte interface. This work highlights the importance of a combined analytical approach and appropriate reference compounds to elucidate the interface reactions in all-solid-state battery systems.

13.
J Am Chem Soc ; 139(15): 5397-5404, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28343394

RESUMO

We report a hafnium-containing MOF, hcp UiO-67(Hf), which is a ligand-deficient layered analogue of the face-centered cubic fcu UiO-67(Hf). hcp UiO-67 accommodates its lower ligand:metal ratio compared to fcu UiO-67 through a new structural mechanism: the formation of a condensed "double cluster" (Hf12O8(OH)14), analogous to the condensation of coordination polyhedra in oxide frameworks. In oxide frameworks, variable stoichiometry can lead to more complex defect structures, e.g., crystallographic shear planes or modules with differing compositions, which can be the source of further chemical reactivity; likewise, the layered hcp UiO-67 can react further to reversibly form a two-dimensional metal-organic framework, hxl UiO-67. Both three-dimensional hcp UiO-67 and two-dimensional hxl UiO-67 can be delaminated to form metal-organic nanosheets. Delamination of hcp UiO-67 occurs through the cleavage of strong hafnium-carboxylate bonds and is effected under mild conditions, suggesting that defect-ordered MOFs could be a productive route to porous two-dimensional materials.

14.
Faraday Discuss ; 192: 217-240, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27472014

RESUMO

Carbon capture and storage (CCS) offers a possible solution to curb the CO2 emissions from stationary sources in the coming decades, considering the delays in shifting energy generation to carbon neutral sources such as wind, solar and biomass. The most mature technology for post-combustion capture uses a liquid sorbent, amine scrubbing. However, with the existing technology, a large amount of heat is required for the regeneration of the liquid sorbent, which introduces a substantial energy penalty. The use of alternative sorbents for CO2 capture, such as the CaO-CaCO3 system, has been investigated extensively in recent years. However there are significant problems associated with the use of CaO based sorbents, the most challenging one being the deactivation of the sorbent material. When sorbents such as natural limestone are used, the capture capacity of the solid sorbent can fall by as much as 90 mol% after the first 20 carbonation-regeneration cycles. In this study a variety of techniques were employed to understand better the cause of this deterioration from both a structural and morphological standpoint. X-ray and neutron PDF studies were employed to understand better the local surface and interfacial structures formed upon reaction, finding that after carbonation the surface roughness is decreased for CaO. In situ synchrotron X-ray diffraction studies showed that carbonation with added steam leads to a faster and more complete conversion of CaO than under conditions without steam, as evidenced by the phases seen at different depths within the sample. Finally, in situ X-ray tomography experiments were employed to track the morphological changes in the sorbents during carbonation, observing directly the reduction in porosity and increase in tortuosity of the pore network over multiple calcination reactions.

15.
Inorg Chem ; 55(13): 6625-33, 2016 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-27299657

RESUMO

Attempts to prepare Gd12Co5Bi, a member of the rare-earth (RE) intermetallics RE12Co5Bi, which were identified by a machine-learning recommendation engine as potential candidates for thermoelectric materials, led instead to formation of the new compound Gd12Co5.3Bi with a very similar composition. Phase equilibria near the Gd-rich corner of the Gd-Co-Bi phase diagram were elucidated by both lab-based and variable-temperature synchrotron powder X-ray diffraction, suggesting that Gd12Co5.3Bi and Gd12Co5Bi are distinct phases. The higher symmetry structure of Gd12Co5.3Bi (cubic, space group Im3̅, Z = 2, a = 9.713(6) Å), as determined from single-crystal X-ray diffraction, is closely related to that of Gd12Co5Bi (tetragonal, space group Immm). Single Co atoms and Co-Co dumbbells are disordered with occupancies of 0.78(2) and 0.22(2), respectively, in Gd12Co5.3Bi, but they are ordered in Gd12Co5Bi. Consistent with this disorder, the electrical resistivity shows less dependence on temperature for Gd12Co5.3Bi than for Gd12Co5Bi. The thermal conductivity is low and reaches 2.8 W m(-1) K(-1) at 600 °C for both compounds; however, the temperature dependence of the thermal conductivity differs, decreasing for Gd12Co5.3Bi and increasing for Gd12Co5Bi as the temperature increases. The unusual trends in thermal properties persist in the heat capacity, which decreases below 2R, and in the thermal diffusivity, which increases at higher temperatures.

16.
Chem Sci ; 15(7): 2640-2647, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38362407

RESUMO

High-throughput synthetic methods are well-established for chemistries involving liquid- or vapour-phase reagents and have been harnessed to prepare arrays of inorganic materials. The versatile but labour-intensive sub-solidus reaction pathway that is the backbone of the functional and electroceramics materials industries has proved more challenging to automate because of the use of solid-state reagents. We present a high-throughput sub-solidus synthesis workflow that permits rapid screening of oxide chemical space that will accelerate materials discovery by enabling simultaneous expansion of explored compositions and synthetic conditions. This increases throughput by using manual steps where actions are undertaken on multiple, rather than individual, samples which are then further combined with researcher-hands-free automated processes. We exemplify this by extending the BaYxSn1-xO3-x/2 solid solution beyond the reported limit to a previously unreported composition and by exploring the Nb-Al-P-O composition space showing the applicability of the workflow to polyanion-based compositions beyond oxides.

17.
Adv Sci (Weinh) ; 10(36): e2304323, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37908162

RESUMO

Glasses frequently reveal structural relaxation that leads to changes in their physical properties including enthalpy, specific volume, and resistivity. Analyzing the short-range order (SRO) obtained from electron diffraction by transmission electron microscopy (TEM) in combination with Reverse-Monte-Carlo (RMC) simulations is shown to provide information on the atomic arrangement. The technique elaborated here features several benefits including reliability, accessibility, and allows for obtaining detailed structural data quickly. This is demonstrated with a detailed view of the structural changes in the as-deposited amorphous phase change material (PCM) GeTe. The data show a significant increase in the average bond angle upon thermal treatment. At the same time the fraction of tetrahedrally coordinated Ge atoms decreases due to an increase in octahedrally distorted and pyramidal motifs. This finding provides further evidence for the atomic processes that govern structural relaxation in amorphous GeTe and other PCMs. A thorough literature review finally unveils possible origins of the large discrepancies reported on the structure of amorphous GeTe.

18.
Phys Chem Chem Phys ; 14(1): 205-17, 2012 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-22081233

RESUMO

Amorphous quaternary [(ZrO(2))(x)(TiO(2))(y)(SiO(2))(1-x-y)] and ternary [(ZrO(2))(x)(SiO(2))(1-x)] silicates were synthesized using a sol-gel method and examined via XPS and XANES. Metal silicates are important industrial materials, though structural characterization is complicated because of their amorphous nature. Hard (Ti K- and Zr K-edge) and soft (Ti L(2,3)-edge) X-ray XANES spectra suggest the Ti and Zr coordination numbers in the quaternary silicates remain constant as the metal identity or total metal content (x, y, or x + y in the chemical formula) is varied. XPS core-line spectra from the quaternary silicates show large decreases in Ti 2p(3/2), Zr 3d(5/2), Si 2p(3/2), and O 1s binding energies due to increasing final-state relaxation with greater next-nearest neighbour substitution of Si for less-electronegative Ti/Zr, which was confirmed by analysis of the O Auger parameter. These decreases in binding energy occur without any changes in the ground-state energies (e.g., oxidation state) of these atoms, as examined by Ti L(2,3)-edge, Si L(2,3)-edge, and O K-edge XANES. Because most spectroscopic investigations are concerned with ground-state properties, knowledge of the contributions from final-state effects is important to understand the spectra from materials of interest.

19.
Chem Mater ; 34(9): 4073-4087, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35573111

RESUMO

A tetragonal argyrodite with >7 mobile cations, Li7Zn0.5SiS6, is experimentally realized for the first time through solid state synthesis and exploration of the Li-Zn-Si-S phase diagram. The crystal structure of Li7Zn0.5SiS6 was solved ab initio from high-resolution X-ray and neutron powder diffraction data and supported by solid-state NMR. Li7Zn0.5SiS6 adopts a tetragonal I4 structure at room temperature with ordered Li and Zn positions and undergoes a transition above 411.1 K to a higher symmetry disordered F43m structure more typical of Li-containing argyrodites. Simultaneous occupation of four types of Li site (T5, T5a, T2, T4) at high temperature and five types of Li site (T5, T2, T4, T1, and a new trigonal planar T2a position) at room temperature is observed. This combination of sites forms interconnected Li pathways driven by the incorporation of Zn2+ into the Li sublattice and enables a range of possible jump processes. Zn2+ occupies the 48h T5 site in the high-temperature F43m structure, and a unique ordering pattern emerges in which only a subset of these T5 sites are occupied at room temperature in I4 Li7Zn0.5SiS6. The ionic conductivity, examined via AC impedance spectroscopy and VT-NMR, is 1.0(2) × 10-7 S cm-1 at room temperature and 4.3(4) × 10-4 S cm-1 at 503 K. The transition between the ordered I4 and disordered F43m structures is associated with a dramatic decrease in activation energy to 0.34(1) eV above 411 K. The incorporation of a small amount of Zn2+ exercises dramatic control of Li order in Li7Zn0.5SiS6 yielding a previously unseen distribution of Li sites, expanding our understanding of structure-property relationships in argyrodite materials.

20.
Inorg Chem ; 50(13): 6263-8, 2011 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-21650163

RESUMO

Rare-earth-filled transition-metal pnictides having the skutterudite-type structure have been proposed for use as high-temperature thermoelectric materials to recover waste heat from vehicle exhaust, among other applications. A previous investigation by this research group of one of the most studied skutterudites, CeFe(4)Sb(12), found that, when exposed to air, this material oxidized at temperatures that are considerably below the proposed maximum operating temperature. Here, by the combined use of TGA, powder XRD, and XANES, it has been found that the substitution of Ce(3+) and Fe(2+) for larger rare-earth and transition-metal elements (Eu(2+) and Ru(2+)) results in a significantly higher oxidation temperature compared to that of CeFe(4)Sb(12). This increase can be related to the increased orbital overlap provided by these larger atoms (Eu(2+) and Ru(2+) vs Ce(3+) and Fe(2+)), enabling the development of stronger bonds. These results show how selective substitution of the constituent elements can significantly improve the thermal stability of materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA