Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(6): 1041-1051.e6, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35202566

RESUMO

The SARS-CoV-2 Omicron variant (B.1.1.529) contains mutations that mediate escape from antibody responses, although the extent to which these substitutions in spike and non-spike proteins affect T cell recognition is unknown. In this study, we show that T cell responses in individuals with prior infection, vaccination, both prior infection and vaccination, and boosted vaccination are largely preserved to Omicron spike and non-spike proteins. However, we also identify a subset of individuals (∼21%) with a >50% reduction in T cell reactivity to the Omicron spike. Evaluation of functional CD4+ and CD8+ memory T cell responses confirmed these findings and revealed that reduced recognition to Omicron spike is primarily observed within the CD8+ T cell compartment potentially due to escape from HLA binding. Booster vaccination enhanced T cell responses to Omicron spike. In contrast to neutralizing immunity, these findings suggest preservation of T cell responses to the Omicron variant, although with reduced reactivity in some individuals.

2.
Cell ; 184(17): 4401-4413.e10, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34265281

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that escape convalescent and vaccine-induced antibody responses has renewed focus on the development of broadly protective T-cell-based vaccines. Here, we apply structure-based network analysis and assessments of HLA class I peptide stability to define mutationally constrained CD8+ T cell epitopes across the SARS-CoV-2 proteome. Highly networked residues are conserved temporally among circulating variants and sarbecoviruses and disproportionately impair spike pseudotyped lentivirus infectivity when mutated. Evaluation of HLA class I stabilizing activity for 18 globally prevalent alleles identifies CD8+ T cell epitopes within highly networked regions with limited mutational frequencies in circulating SARS-CoV-2 variants and deep-sequenced primary isolates. Moreover, these epitopes elicit demonstrable CD8+ T cell reactivity in convalescent individuals but reduced recognition in recipients of mRNA-based vaccines. These data thereby elucidate key mutationally constrained regions and immunogenic epitopes in the SARS-CoV-2 proteome for a global T-cell-based vaccine against emerging variants and SARS-like coronaviruses.


Assuntos
Vacinas contra COVID-19/imunologia , Epitopos de Linfócito T , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/química , Antígenos HLA/imunologia , Humanos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
4.
Immunity ; 54(10): 2372-2384.e7, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34496223

RESUMO

Spontaneous control of HIV infection has been repeatedly linked to antiviral CD8+ T cells but is not always permanent. To address mechanisms of durable and aborted control of viremia, we evaluated immunologic and virologic parameters longitudinally among 34 HIV-infected subjects with differential outcomes. Despite sustained recognition of autologous virus, HIV-specific proliferative and cytolytic T cell effector functions became selectively and intrinsically impaired prior to aborted control. Longitudinal transcriptomic profiling of functionally impaired HIV-specific CD8+ T cells revealed altered expression of genes related to activation, cytokine-mediated signaling, and cell cycle regulation, including increased expression of the antiproliferative transcription factor KLF2 but not of genes associated with canonical exhaustion. Lymphoid HIV-specific CD8+ T cells also exhibited poor functionality during aborted control relative to durable control. Our results identify selective functional impairment of HIV-specific CD8+ T cells as prognostic of impending aborted HIV control, with implications for clinical monitoring and immunotherapeutic strategies.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Viremia/imunologia , Viremia/virologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva
5.
EMBO Rep ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849673

RESUMO

Polarized vesicular trafficking directs specific receptors and ion channels to cilia, but the underlying mechanisms are poorly understood. Here we describe a role for DLG1, a core component of the Scribble polarity complex, in regulating ciliary protein trafficking in kidney epithelial cells. Conditional knockout of Dlg1 in mouse kidney causes ciliary elongation and cystogenesis, and cell-based proximity labeling proteomics and fluorescence microscopy show alterations in the ciliary proteome upon loss of DLG1. Specifically, the retromer-associated protein SDCCAG3, IFT20, and polycystin-2 (PC2) are reduced in the cilia of DLG1-deficient cells compared to control cells. This phenotype is recapitulated in vivo and rescuable by re-expression of wild-type DLG1, but not a Congenital Anomalies of the Kidney and Urinary Tract (CAKUT)-associated DLG1 variant, p.T489R. Finally, biochemical approaches and Alpha Fold modelling suggest that SDCCAG3 and IFT20 form a complex that associates, at least indirectly, with DLG1. Our work identifies a key role for DLG1 in regulating ciliary protein composition and suggests that ciliary dysfunction of the p.T489R DLG1 variant may contribute to CAKUT.

6.
Proc Natl Acad Sci U S A ; 120(22): e2207355120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216547

RESUMO

Biased mutation spectra are pervasive, with wide variation in the magnitude of mutational biases that influence genome evolution and adaptation. How do such diverse biases evolve? Our experiments show that changing the mutation spectrum allows populations to sample previously undersampled mutational space, including beneficial mutations. The resulting shift in the distribution of fitness effects is advantageous: Beneficial mutation supply and beneficial pleiotropy both increase, while deleterious load reduces. More broadly, simulations indicate that reducing or reversing the direction of a long-term bias is always selectively favored. Such changes in mutation bias can occur easily via altered function of DNA repair genes. A phylogenetic analysis shows that these genes are repeatedly gained and lost in bacterial lineages, leading to frequent bias shifts in opposite directions. Thus, shifts in mutation spectra may evolve under selection and can directly alter the outcome of adaptive evolution by facilitating access to beneficial mutations.


Assuntos
Aclimatação , Adaptação Fisiológica , Filogenia , Mutação , Adaptação Fisiológica/genética , Genoma , Seleção Genética , Evolução Molecular
7.
Immunity ; 45(3): 466-468, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27653598

RESUMO

A new macaque study by Cartwright et al. (2016) suggests that CD8(+) T cells could play a previously unrecognized role in the suppression of HIV-1 during ongoing antiretroviral therapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Animais , Fármacos Anti-HIV/imunologia , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Terapia Antirretroviral de Alta Atividade/métodos , Linfócitos T CD8-Positivos/virologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , HIV-1/efeitos dos fármacos , HIV-1/imunologia , Humanos
8.
Plant J ; 114(3): 463-481, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36880270

RESUMO

Plant responses to environmental change are mediated via changes in cellular metabolomes. However, <5% of signals obtained from liquid chromatography tandem mass spectrometry (LC-MS/MS) can be identified, limiting our understanding of how metabolomes change under biotic/abiotic stress. To address this challenge, we performed untargeted LC-MS/MS of leaves, roots, and other organs of Brachypodium distachyon (Poaceae) under 17 organ-condition combinations, including copper deficiency, heat stress, low phosphate, and arbuscular mycorrhizal symbiosis. We found that both leaf and root metabolomes were significantly affected by the growth medium. Leaf metabolomes were more diverse than root metabolomes, but the latter were more specialized and more responsive to environmental change. We found that 1 week of copper deficiency shielded the root, but not the leaf metabolome, from perturbation due to heat stress. Machine learning (ML)-based analysis annotated approximately 81% of the fragmented peaks versus approximately 6% using spectral matches alone. We performed one of the most extensive validations of ML-based peak annotations in plants using thousands of authentic standards, and analyzed approximately 37% of the annotated peaks based on these assessments. Analyzing responsiveness of each predicted metabolite class to environmental change revealed significant perturbations of glycerophospholipids, sphingolipids, and flavonoids. Co-accumulation analysis further identified condition-specific biomarkers. To make these results accessible, we developed a visualization platform on the Bio-Analytic Resource for Plant Biology website (https://bar.utoronto.ca/efp_brachypodium_metabolites/cgi-bin/efpWeb.cgi), where perturbed metabolite classes can be readily visualized. Overall, our study illustrates how emerging chemoinformatic methods can be applied to reveal novel insights into the dynamic plant metabolome and stress adaptation.


Assuntos
Brachypodium , Brachypodium/metabolismo , Cromatografia Líquida , Teoria da Informação , Cobre/metabolismo , Espectrometria de Massas em Tandem , Metabolômica/métodos , Metaboloma
9.
Artigo em Inglês | MEDLINE | ID: mdl-38594749

RESUMO

We present a case of a neonate who presented with worsening heart failure due to congenital complete atrioventricular (AV) block, secondary to maternal anti Ro/SSA and anti-LA/SSB antibodies. The patient was implanted a temporary pacemaker in view of hemodynamic deterioration and subsequently was weaned off ionotropic support and referred for permanent epicardial pacemaker implantation. We report temporary pacemaker implantation in a neonate with hemodynamic instability as a stabilizing measure and discuss technical challenges for the same.

10.
Plant J ; 111(5): 1453-1468, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35816116

RESUMO

Large enzyme families catalyze metabolic diversification by virtue of their ability to use diverse chemical scaffolds. How enzyme families attain such functional diversity is not clear. Furthermore, duplication and promiscuity in such enzyme families limits their functional prediction, which has produced a burgeoning set of incompletely annotated genes in plant genomes. Here, we address these challenges using BAHD acyltransferases as a model. This fast-evolving family expanded drastically in land plants, increasing from one to five copies in algae to approximately 100 copies in diploid angiosperm genomes. Compilation of >160 published activities helped visualize the chemical space occupied by this family and define eight different classes based on structural similarities between acceptor substrates. Using orthologous groups (OGs) across 52 sequenced plant genomes, we developed a method to predict BAHD acceptor substrate class utilization as well as origins of individual BAHD OGs in plant evolution. This method was validated using six novel and 28 previously characterized enzymes and helped improve putative substrate class predictions for BAHDs in the tomato genome. Our results also revealed that while cuticular wax and lignin biosynthetic activities were more ancient, anthocyanin acylation activity was fixed in BAHDs later near the origin of angiosperms. The OG-based analysis enabled identification of signature motifs in anthocyanin-acylating BAHDs, whose importance was validated via molecular dynamic simulations, site-directed mutagenesis and kinetic assays. Our results not only describe how BAHDs contributed to evolution of multiple chemical phenotypes in the plant world but also propose a biocuration-enabled approach for improved functional annotation of plant enzyme families.


Assuntos
Aciltransferases , Solanum lycopersicum , Aciltransferases/metabolismo , Antocianinas/metabolismo , Genoma de Planta/genética , Solanum lycopersicum/genética , Filogenia , Plantas/metabolismo
11.
Immunity ; 41(6): 1001-12, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25526311

RESUMO

Decreased HIV-specific CD8(+) T cell proliferation is a hallmark of chronic infection, but the mechanisms of decline are unclear. We analyzed gene expression profiles from antigen-stimulated HIV-specific CD8(+) T cells from patients with controlled and uncontrolled infection and identified caspase-8 as a correlate of dysfunctional CD8(+) T cell proliferation. Caspase-8 activity was upregulated in HIV-specific CD8(+) T cells from progressors and correlated positively with disease progression and programmed cell death-1 (PD-1) expression, but negatively with proliferation. In addition, progressor cells displayed a decreased ability to upregulate membrane-associated caspase-8 activity and increased necrotic cell death following antigenic stimulation, implicating the programmed cell death pathway necroptosis. In vitro necroptosis blockade rescued HIV-specific CD8(+) T cell proliferation in progressors, as did silencing of necroptosis mediator RIPK3. Thus, chronic stimulation leading to upregulated caspase-8 activity contributes to dysfunctional HIV-specific CD8(+) T cell proliferation through activation of necroptosis and increased cell death.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Caspase 8/metabolismo , Infecções por HIV/imunologia , HIV/fisiologia , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T CD8-Positivos/virologia , Proliferação de Células/genética , Células Cultivadas , Progressão da Doença , Ativação Enzimática , Regulação da Expressão Gênica , Proteína do Núcleo p24 do HIV/imunologia , Humanos , Necrose , Fragmentos de Peptídeos/imunologia , Receptor de Morte Celular Programada 1/genética , RNA Interferente Pequeno/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transcriptoma , Carga Viral
12.
Proc Natl Acad Sci U S A ; 117(21): 11836-11842, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32398372

RESUMO

Systematic mappings of protein interactome networks have provided invaluable functional information for numerous model organisms. Here we develop PCR-mediated Linkage of barcoded Adapters To nucleic acid Elements for sequencing (PLATE-seq) that serves as a general tool to rapidly sequence thousands of DNA elements. We validate its utility by generating the ORFeome for Oryza sativa covering 2,300 genes and constructing a high-quality protein-protein interactome map consisting of 322 interactions between 289 proteins, expanding the known interactions in rice by roughly 50%. Our work paves the way for high-throughput profiling of protein-protein interactions in a wide range of organisms.


Assuntos
Fases de Leitura Aberta/genética , Oryza/genética , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas/genética , Análise de Sequência de DNA/métodos , Biologia Computacional/métodos , DNA de Plantas/genética , Bases de Dados Genéticas , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
13.
J Infect Dis ; 225(7): 1141-1150, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34888672

RESUMO

BACKGROUND: Understanding immunogenicity and effectiveness of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines is critical to guide rational use. METHODS: We compared the immunogenicity of mRNA-1273, BNT-162b2, and Ad26.COV2.S in healthy ambulatory adults. We performed an inverse-variance meta-analysis of population-level effectiveness from public health reports in > 40 million individuals. RESULTS: A single dose of either mRNA vaccine yielded comparable antibody and neutralization titers to convalescent individuals. Ad26.COV2.S yielded lower antibody concentrations and frequently undetectable neutralization titers. Bulk and cytotoxic T-cell responses were higher in mRNA1273 and BNT162b2 than Ad26.COV2.S recipients. Regardless of vaccine, <50% of vaccinees demonstrated CD8+ T-cell responses. Antibody concentrations and neutralization titers increased comparably after the first dose of either vaccine, and further in recipients of a second dose. Prior infection was associated with high antibody concentrations and neutralization even after a single dose and regardless of vaccine. Neutralization of Beta, Gamma, and Delta strains were poorer regardless of vaccine. In meta-analysis, relative to mRNA1273 the effectiveness of BNT162b2 was lower against infection and hospitalization, and Ad26COV2.S was lower against infection, hospitalization, and death. CONCLUSIONS: Variation in the immunogenicity correlates with variable effectiveness of the 3 vaccines deployed in the United States.


Assuntos
Ad26COVS1 , COVID-19 , Vacina de mRNA-1273 contra 2019-nCoV , Adulto , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunogenicidade da Vacina , SARS-CoV-2/genética , Vacinas Sintéticas , Vacinas de mRNA
14.
Plant Mol Biol ; 109(4-5): 505-522, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34586580

RESUMO

KEY MESSAGE: Nicotiana benthamiana acylsugar acyltransferase (ASAT) is required for protection against desiccation and insect herbivory. Knockout mutations provide a new resource for investigation of plant-aphid and plant-whitefly interactions. Nicotiana benthamiana is used extensively as a transient expression platform for functional analysis of genes from other species. Acylsugars, which are produced in the trichomes, are a hypothesized cause of the relatively high insect resistance that is observed in N. benthamiana. We characterized the N. benthamiana acylsugar profile, bioinformatically identified two acylsugar acyltransferase genes, ASAT1 and ASAT2, and used CRISPR/Cas9 mutagenesis to produce acylsugar-deficient plants for investigation of insect resistance and foliar water loss. Whereas asat1 mutations reduced accumulation, asat2 mutations caused almost complete depletion of foliar acylsucroses. Three hemipteran and three lepidopteran herbivores survived, gained weight, and/or reproduced significantly better on asat2 mutants than on wildtype N. benthamiana. Both asat1 and asat2 mutations reduced the water content and increased leaf temperature. Our results demonstrate the specific function of two ASAT proteins in N. benthamiana acylsugar biosynthesis, insect resistance, and desiccation tolerance. The improved growth of aphids and whiteflies on asat2 mutants will facilitate the use of N. benthamiana as a transient expression platform for the functional analysis of insect effectors and resistance genes from other plant species. Similarly, the absence of acylsugars in asat2 mutants will enable analysis of acylsugar biosynthesis genes from other Solanaceae by transient expression.


Assuntos
Hemípteros , Nicotiana , Aciltransferases/metabolismo , Animais , Dessecação , Herbivoria , Insetos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Água
15.
Mol Biol Evol ; 38(8): 3202-3219, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-33822137

RESUMO

Evolutionary dynamics at the population level play a central role in creating the diversity of life on our planet. In this study, we sought to understand the origins of such population-level variation in mating systems and defensive acylsugar chemistry in Solanum habrochaites-a wild tomato species found in diverse Andean habitats in Ecuador and Peru. Using Restriction-site-Associated-DNA-Sequencing (RAD-seq) of 50 S. habrochaites accessions, we identified eight population clusters generated via isolation and hybridization dynamics of 4-6 ancestral populations. Detailed characterization of mating systems of these clusters revealed emergence of multiple self-compatible (SC) groups from progenitor self-incompatible populations in the northern part of the species range. Emergence of these SC groups was also associated with fixation of deleterious alleles inactivating acylsugar acetylation. The Amotape-Huancabamba Zone-a geographical landmark in the Andes with high endemism and isolated microhabitats-was identified as a major driver of differentiation in the northern species range, whereas large geographical distances contributed to population structure and evolution of a novel SC group in the central and southern parts of the range, where the species was also inferred to have originated. Findings presented here highlight the role of the diverse ecogeography of Peru and Ecuador in generating population differentiation, and enhance our understanding of the microevolutionary processes that create biological diversity.


Assuntos
Fluxo Gênico , Autoincompatibilidade em Angiospermas/genética , Solanum lycopersicum/genética , Solanum/genética , Acetilação , Equador , Solanum lycopersicum/metabolismo , Peru , Filogeografia , Autofertilização , Solanum/metabolismo
16.
Microb Pathog ; 173(Pt B): 105885, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36403711

RESUMO

Stress adaptation and virulence of various bacterial pathogens require stringent response pathways involving guanosine pentaphosphate and inorganic polyphosphate (PolyP). In M. tuberculosis, intracellular PolyP levels are maintained by the activities of polyphosphate kinase (PPK-1, PPK-2) and exopolyphosphatases (PPX-1, PPX-2). We demonstrate that these exopolyphosphatases cumulatively contribute to biofilm formation and survival of M. tuberculosis in nutrient limiting, low oxygen growth conditions and in macrophages. Characterization of single (Δppx2) and double knock out strain (dkppx) of M. tuberculosis demonstrated that these exopolyphosphatases are essential for establishing infection in guinea pigs and mice. Transcriptional profiling revealed that relative to the parental strain the expression of genes belonging to DosR regulon were significantly reduced in mid-log phase cultures of dkppx strain. We also show that PolyP inhibited the autophosphorylation activities associated with DosT and DosS sensor kinases. Host RNA-seq analysis revealed that transcripts involved in various antimicrobial pathways such as apoptosis, autophagy, macrophage activation, calcium signalling, innate and T-cell response were differentially expressed in lung tissues of dkppx strain infected mice. Taken together, we demonstrate that enzymes involved in PolyP homeostasis play a critical role in physiology and virulence of M. tuberculosis. These enzymes are attractive targets for developing novel interventions that might be active against drug-sensitive and drug-resistant M. tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Animais , Cobaias , Camundongos , Mycobacterium tuberculosis/genética , Virulência , Macrófagos
17.
J Infect Dis ; 223(12 Suppl 2): 32-37, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33586771

RESUMO

The development of an effective human immunodeficiency virus (HIV) cure is a critical global health priority. A major obstacle to this effort is the establishment of a latent reservoir of HIV infected cells, which necessitates lifelong therapy, causing both logistical and adherence burdens for infected individuals. However, in a subset of these individuals, cytotoxic T lymphocytes (CTLs) can durably suppress viral outgrowth in the absence of therapy, providing a path towards a viable HIV cure. In this review, we discuss the emerging role that CTLs have in HIV cure efforts, with particular emphasis on epitope specificity. Recent studies have demonstrated that successful in vivo containment of the virus is rooted in the specific targeting of fitness-constrained, mutation-resistant regions of the HIV proteome. We highlight these new insights, providing context with previous observations in HIV and other models of viral control, and delineate their translation into a therapeutic vaccine.


Assuntos
Epitopos de Linfócito T/imunologia , Infecções por HIV/imunologia , HIV-1/fisiologia , Linfócitos T Citotóxicos/imunologia , Vacinas contra a AIDS/genética , Vacinas contra a AIDS/imunologia , Animais , Epitopos de Linfócito T/genética , Infecções por HIV/terapia , Infecções por HIV/virologia , HIV-1/genética , Humanos
18.
Plant Physiol ; 183(3): 915-924, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32354879

RESUMO

Plants make many biologically active, specialized metabolites, which vary in structure, biosynthesis, and the processes they influence. An increasing number of these compounds are documented to protect plants from insects, pathogens, or herbivores or to mediate interactions with beneficial organisms, including pollinators and nitrogen-fixing microbes. Acylsugars, one class of protective compounds, are made in glandular trichomes of plants across the Solanaceae family. While most described acylsugars are acylsucroses, published examples also include acylsugars with hexose cores. The South American fruit crop naranjilla (lulo; Solanum quitoense) produces acylsugars containing a myoinositol core. We identified an enzyme that acetylates triacylinositols, a function homologous to the last step in the acylsucrose biosynthetic pathway of tomato (Solanum lycopersicum). Our analysis reveals parallels between S. lycopersicum acylsucrose and S. quitoense acylinositol biosynthesis, suggesting a common evolutionary origin.


Assuntos
Vias Biossintéticas , Inositol/biossíntese , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum/genética , Solanum/metabolismo , Tricomas/metabolismo , Acilação , Variação Genética
19.
J Biol Chem ; 294(28): 10819-10832, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31113860

RESUMO

Stringent response pathways involving inorganic polyphosphate (PolyP) play an essential role in bacterial stress adaptation and virulence. The intracellular levels of PolyP are modulated by the activities of polyphosphate kinase-1 (PPK1), polyphosphate kinase-2 (PPK2), and exopolyphosphatases (PPXs). The genome of Mycobacterium tuberculosis encodes two functional PPXs, and simultaneous deletion of ppx1 and ppx2 results in a defect in biofilm formation. We demonstrate here that these PPXs cumulatively contribute to the ability of M. tuberculosis to survive in nutrient-limiting, low-oxygen growth conditions and also in macrophages. Characterization of single (Δppx2) and double knockout (dkppx) strains of M. tuberculosis indicated that PPX-mediated PolyP degradation is essential for establishing bacterial infection in guinea pigs. RNA-Seq-based transcriptional profiling revealed that relative to the parental strain, the expression levels of DosR regulon-regulated dormancy genes were significantly reduced in the dkppx mutant strain. In concordance, we also provide evidence that PolyP inhibits the autophosphorylation activities associated with DosT and DosS sensor kinases. The results in this study uncover that enzymes involved in PolyP homeostasis play a critical role in M. tuberculosis physiology and virulence and are attractive targets for developing more effective therapeutic interventions.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Mycobacterium tuberculosis/fisiologia , Polifosfatos/metabolismo , Hidrolases Anidrido Ácido/genética , Animais , Antituberculosos/farmacologia , Proteínas de Bactérias/metabolismo , Feminino , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Cobaias , Viabilidade Microbiana/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidade , Fosfotransferases/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/fisiologia , Virulência/efeitos dos fármacos
20.
Genet Med ; 22(3): 610-621, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31761904

RESUMO

PURPOSE: Pathogenic variants in neuroblastoma-amplified sequence (NBAS) cause an autosomal recessive disorder with a wide range of symptoms affecting liver, skeletal system, and brain, among others. There is a continuously growing number of patients but a lack of systematic and quantitative analysis. METHODS: Individuals with biallelic variants in NBAS were recruited within an international, multicenter study, including novel and previously published patients. Clinical variables were analyzed with log-linear models and visualized by mosaic plots; facial profiles were investigated via DeepGestalt. The structure of the NBAS protein was predicted using computational methods. RESULTS: One hundred ten individuals from 97 families with biallelic pathogenic NBAS variants were identified, including 26 novel patients with 19 previously unreported variants, giving a total number of 86 variants. Protein modeling redefined the ß-propeller domain of NBAS. Based on the localization of missense variants and in-frame deletions, three clinical subgroups arise that differ significantly regarding main clinical features and are directly related to the affected region of the NBAS protein: ß-propeller (combined phenotype), Sec39 (infantile liver failure syndrome type 2/ILFS2), and C-terminal (short stature, optic atrophy, and Pelger-Huët anomaly/SOPH). CONCLUSION: We define clinical subgroups of NBAS-associated disease that can guide patient management and point to domain-specific functions of NBAS.


Assuntos
Doenças Genéticas Inatas/genética , Predisposição Genética para Doença , Proteínas de Neoplasias/genética , Alelos , Encéfalo/patologia , Criança , Pré-Escolar , Feminino , Doenças Genéticas Inatas/patologia , Humanos , Lactente , Fígado/patologia , Transplante de Fígado/efeitos adversos , Masculino , Músculo Esquelético/patologia , Mutação de Sentido Incorreto/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA