RESUMO
Introduction: Systemic lupus erythematosus (SLE) is an autoimmune connective tissue disease affecting multiple organs in the human body, including the central nervous system. Recently, an artificial intelligence method called BrainAGE (Brain Age Gap Estimation), defined as predicted age minus chronological age, has been developed to measure the deviation of brain aging from a healthy population using MRI. Our aim was to evaluate brain aging in SLE patients using a deep-learning BrainAGE model. Methods: Seventy female patients with a clinical diagnosis of SLE and 24 healthy age-matched control females, were included in this post-hoc analysis of prospectively acquired data. All subjects had previously undergone a 3 T MRI acquisition, a neuropsychological evaluation and a measurement of neurofilament light protein in plasma (NfL). A BrainAGE model with a 3D convolutional neural network architecture, pre-trained on the 3D-T1 images of 1,295 healthy female subjects to predict their chronological age, was applied on the images of SLE patients and controls in order to compute the BrainAGE. SLE patients were divided into 2 groups according to the BrainAGE distribution (high vs. low BrainAGE). Results: BrainAGE z-score was significantly higher in SLE patients than in controls (+0.6 [±1.1] vs. 0 [±1.0], p = 0.02). In SLE patients, high BrainAGE was associated with longer reaction times (p = 0.02), lower psychomotor speed (p = 0.001) and cognitive flexibility (p = 0.04), as well as with higher NfL after adjusting for age (p = 0.001). Conclusion: Using a deep-learning BrainAGE model, we provide evidence of increased brain aging in SLE patients, which reflected neuronal damage and cognitive impairment.
RESUMO
BACKGROUND AND OBJECTIVES: While chronological age is one of the most influential determinants of poststroke outcomes, little is known of the impact of neuroimaging-derived biological "brain age." We hypothesized that radiomics analyses of T2-FLAIR images texture would provide brain age estimates and that advanced brain age of patients with stroke will be associated with cardiovascular risk factors and worse functional outcomes. METHODS: We extracted radiomics from T2-FLAIR images acquired during acute stroke clinical evaluation. Brain age was determined from brain parenchyma radiomics using an ElasticNet linear regression model. Subsequently, relative brain age (RBA), which expresses brain age in comparison with chronological age-matched peers, was estimated. Finally, we built a linear regression model of RBA using clinical cardiovascular characteristics as inputs and a logistic regression model of favorable functional outcomes taking RBA as input. RESULTS: We reviewed 4,163 patients from a large multisite ischemic stroke cohort (mean age = 62.8 years, 42.0% female patients). T2-FLAIR radiomics predicted chronological ages (mean absolute error = 6.9 years, r = 0.81). After adjustment for covariates, RBA was higher and therefore described older-appearing brains in patients with hypertension, diabetes mellitus, a history of smoking, and a history of a prior stroke. In multivariate analyses, age, RBA, NIHSS, and a history of prior stroke were all significantly associated with functional outcome (respective adjusted odds ratios: 0.58, 0.76, 0.48, 0.55; all p-values < 0.001). Moreover, the negative effect of RBA on outcome was especially pronounced in minor strokes. DISCUSSION: T2-FLAIR radiomics can be used to predict brain age and derive RBA. Older-appearing brains, characterized by a higher RBA, reflect cardiovascular risk factor accumulation and are linked to worse outcomes after stroke.
Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Encéfalo/diagnóstico por imagem , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/complicações , AVC Isquêmico/complicações , Imageamento por Ressonância Magnética/métodos , Acidente Vascular Cerebral/complicaçõesRESUMO
Objective: Predicted age difference (PAD) is a score computed by subtracting chronological age from "brain" age, which is estimated using neuroimaging data. The goal of this study was to evaluate the PAD as a marker of phenotypic heterogeneity and severity among early-onset Alzheimer's disease (EOAD) patients. Methods: We first used 3D T1-weighted (3D-T1) magnetic resonance images (MRI) of 3,227 healthy subjects aged between 18 and 85 years to train, optimize, and evaluate the brain age model. A total of 123 participants who met the criteria for early-onset (<65 years) sporadic form of probable Alzheimer's disease (AD) and presented with two distinctive clinical presentations [an amnestic form (n = 74) and a non-amnestic form (n = 49)] were included at baseline and followed-up for a maximum period of 4 years. All the participants underwent a work-up at baseline and every year during the follow-up period, which included clinical examination, neuropsychological testing and genotyping, and structural MRI. In addition, cerebrospinal fluid biomarker assay was recorded at baseline. PAD score was calculated by applying brain age model to 3D-T1 images of the EOAD patients and healthy controls, who were matched based on age and sex. At baseline, between-group differences for neuropsychological and PAD scores were assessed using linear models. Regarding longitudinal analysis of neuropsychological and PAD scores, differences between amnestic and non-amnestic participants were analyzed using linear mixed-effects modeling. Results: PAD score was significantly higher for non-amnestic patients (2.35 ± 0.91) when compared to amnestic patients (2.09 ± 0.74) and controls (0.00 ± 1). Moreover, PAD score was linearly correlated with the Mini-Mental State Examination (MMSE) and the Clinical Dementia Rating Sum of Boxes (CDR-SB), for both amnestic and non-amnestic sporadic forms. Longitudinal analyses showed that the gradual development of the disease in patients was accompanied by a significant increase in PAD score over time, for both amnestic and non-amnestic patients. Conclusion: PAD score was able to separate amnestic and non-amnestic sporadic forms. Regardless of the clinical presentation, as PAD score was a way of quantifying an early brain age acceleration, it was an appropriate method to detect the development of AD and follow the evolution of the disease as a marker of severity as MMSE and CDR-SB.