Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Phytopathology ; 113(7): 1222-1232, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36802873

RESUMO

The fungal phytopathogen Leptosphaeria maculans, which causes stem canker (blackleg) of rapeseed (Brassica napus), is mainly controlled worldwide by genetic resistance, which includes major resistance genes (Rlm). This model is one of those for which the highest number of avirulence genes (AvrLm) has been cloned. In many systems, including the L. maculans-B. napus interaction, intense use of resistance genes exerts strong selection pressure on the corresponding avirulent isolates, and the fungi may rapidly escape resistance through various molecular events which modify the avirulence genes. In the literature, the study of polymorphism at avirulence loci is often focused on single genes under selection pressure. In this study, we investigate allelic polymorphism at 11 avirulence loci in a French population of 89 L. maculans isolates collected on a trap cultivar in four geographic locations in the 2017-2018 cropping season. The corresponding Rlm genes have been (i) used for a long time, (ii) recently used, or (iii) unused in agricultural practice. The sequence data generated indicate an extreme diversity of situations. For example, genes submitted to an ancient selection may have either been deleted in populations (AvrLm1) or replaced by a single-nucleotide mutated virulent version (AvrLm2, AvrLm5-9). Genes that have never been under selection may either be nearly invariant (AvrLm6, AvrLm10A, AvrLm10B), exhibit rare deletions (AvrLm11, AvrLm14), or display a high diversity of alleles and isoforms (AvrLmS-Lep2). These data suggest that the evolutionary trajectory of avirulence/virulence alleles is gene-dependent and independent of selection pressure in L. maculans. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ascomicetos , Brassica napus , Brassica , Ascomicetos/genética , Doenças das Plantas/microbiologia , Polimorfismo Genético , Brassica napus/microbiologia
2.
Phytopathology ; : PHYTO04220108R, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-35621309

RESUMO

Strategies for plant resistance gene deployment aim to preserve their durability to highly adaptable fungal pathogens. While the pyramiding of resistance genes is often proposed as an effective way to increase their durability, molecular mechanisms by which the pathogen can overcome the resistance also are important aspects to take into account. Here, we report a counterexample where pyramiding of two resistance genes of Brassica napus, Rlm3 and Rlm7, matching the Leptosphaeria maculans avirulence genes AvrLm3 and AvrLm4-7, respectively, favored the selection of double-virulent isolates. We previously demonstrated that the presence of a functional AvrLm4-7 gene in an isolate masks the Rlm3-AvrLm3 recognition. Rlm7 was massively deployed in France since 2004. L. maculans populations were surveyed on a large scale (>7,600 isolates) over a period of 20 years, and resistance gene deployment at the regional scale was determined. Mutations in isolates overcoming both resistance genes were analyzed. All data indicated that the simultaneous success of Rlm7, the deployment of varieties pyramiding Rlm3 and Rlm7, along with the decrease in areas cultivated with Rlm3 only, contributed to the success of virulent isolates toward Rlm7, and more recently to both Rlm3 and Rlm7. Experimental field assays proved that resistance gene alternation was a better strategy compared with pyramiding in this context. Our study also illustrated an unusually high sequence diversification of AvrLm3 and AvrLm4-7 under such a selection pressure, and identified a few regions of the AvrLm4-7 protein involved in both its recognition by Rlm7 and in its AvrLm3-Rlm3 masking ability. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.

3.
Environ Microbiol ; 22(12): 5189-5206, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32755016

RESUMO

Esca, a major grapevine trunk disease in old grapevines, is associated with the colonization of woody tissues by a broad range of plant pathogenic fungi. To identify which fungal and bacterial species are involved in the onset of this disease, we analysed the microbiota from woody tissues of young (10-year-old) grapevines at an early stage of esca. Using meta-barcoding, 515 fungal and 403 bacterial operational taxonomic units (OTUs) were identified in woody tissues. In situ hybridization showed that these fungi and bacteria co-inhabited in grapevine woody tissues. In non-necrotic woody tissues, fungal and bacterial microbiota varied according to organs and seasons but not diseased plant status. Phaeomoniella chlamydospora, involved in the Grapevine trunk disease, was the most abundant species in non-necrotic tissues from healthy plants, suggesting a possible non-pathogenic endophytic behaviour. Most diseased plants (70%) displayed cordons, with their central white-rot necrosis colonized essentially by two plant pathogenic fungi (Fomitiporia mediterranea: 60%-90% and P. chlamydospora: 5%-15%) and by a few bacterial taxa (Sphingomonas spp. and Mycobacterium spp.). The occurrence of a specific association of fungal and bacterial species in cordons from young grapevines expressing esca-foliar symptoms strongly suggests that that microbiota is involved in the onset of this complex disease.


Assuntos
Microbiota , Doenças das Plantas/microbiologia , Vitis/microbiologia , Madeira/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Estruturas Vegetais/microbiologia , Estações do Ano
4.
PLoS Pathog ; 10(1): e1003903, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24465211

RESUMO

Analyses of large-scale population structure of pathogens enable the identification of migration patterns, diversity reservoirs or longevity of populations, the understanding of current evolutionary trajectories and the anticipation of future ones. This is particularly important for long-distance migrating fungal pathogens such as Puccinia striiformis f.sp. tritici (PST), capable of rapid spread to new regions and crop varieties. Although a range of recent PST invasions at continental scales are well documented, the worldwide population structure and the center of origin of the pathogen were still unknown. In this study, we used multilocus microsatellite genotyping to infer worldwide population structure of PST and the origin of new invasions based on 409 isolates representative of distribution of the fungus on six continents. Bayesian and multivariate clustering methods partitioned the set of multilocus genotypes into six distinct genetic groups associated with their geographical origin. Analyses of linkage disequilibrium and genotypic diversity indicated a strong regional heterogeneity in levels of recombination, with clear signatures of recombination in the Himalayan (Nepal and Pakistan) and near-Himalayan regions (China) and a predominant clonal population structure in other regions. The higher genotypic diversity, recombinant population structure and high sexual reproduction ability in the Himalayan and neighboring regions suggests this area as the putative center of origin of PST. We used clustering methods and approximate Bayesian computation (ABC) to compare different competing scenarios describing ancestral relationship among ancestral populations and more recently founded populations. Our analyses confirmed the Middle East-East Africa as the most likely source of newly spreading, high-temperature-adapted strains; Europe as the source of South American, North American and Australian populations; and Mediterranean-Central Asian populations as the origin of South African populations. Although most geographic populations are not markedly affected by recent dispersal events, this study emphasizes the influence of human activities on recent long-distance spread of the pathogen.


Assuntos
Basidiomycota/genética , Variação Genética , Genótipo , Repetições de Microssatélites , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum/microbiologia , Humanos
5.
Mol Ecol ; 23(3): 603-17, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24354737

RESUMO

Understanding the mode of temporal maintenance of plant pathogens is an important domain of microbial ecology research. Due to the inconspicuous nature of microbes, their temporal maintenance cannot be studied directly through tracking individuals and their progeny. Here, we suggest a series of population genetic analyses on molecular marker variation in temporally spaced samples to infer about the relative contribution of sexual reproduction, off-season survival and migration to the temporal maintenance of pathogen populations. We used the proposed approach to investigate the temporal maintenance of wheat yellow rust pathogen, Puccinia striiformis f.sp. tritici (PST), in the Himalayan region of Pakistan. Multilocus microsatellite genotyping of PST isolates revealed high genotypic diversity and recombinant population structure across all locations, confirming the existence of sexual reproduction in this region. The genotypes were assigned to four genetic groups, revealing a clear differentiation between zones with and without Berberis spp., the alternate host of PST, with an additional subdivision within the Berberis zone. The lack of any differentiation between samples across two sampling years, and the very infrequent resampling of multilocus genotypes over years at a given location was consistent with limited over-year clonal survival, and a limited genetic drift. The off-season oversummering population in the Berberis zone, likely to be maintained locally, served as a source of migrants contributing to the temporal maintenance in the non-Berberis zone. Our study hence demonstrated the contribution of both sexual recombination and off-season oversummering survival to the temporal maintenance of the pathogen. These new insights into the population biology of PST highlight the general usefulness of the analytical approach proposed.


Assuntos
Basidiomycota/genética , Genética Populacional , Doenças das Plantas/microbiologia , Triticum/microbiologia , Teorema de Bayes , Berberis/microbiologia , Análise por Conglomerados , DNA Fúngico/genética , Variação Genética , Genótipo , Repetições de Microssatélites , Tipagem de Sequências Multilocus , Paquistão , Densidade Demográfica , Estações do Ano , Análise de Sequência de DNA
6.
PLoS Genet ; 7(8): e1002230, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21876677

RESUMO

Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38-39 Mb genomes include 11,860-14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to <1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea-specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such successful and persistent pathogens of agronomic crops.


Assuntos
Ascomicetos/genética , Botrytis/genética , Genoma Fúngico , Doenças das Plantas/microbiologia , Elementos de DNA Transponíveis , Genes Fúngicos , Genômica , Filogenia , Doenças das Plantas/genética , Sintenia
7.
PLoS One ; 14(1): e0207988, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30633747

RESUMO

Fusarium head blight (FHB) is a major cereal disease caused by a complex of Fusarium species. These species vary in importance depending on climatic conditions, agronomic factors or host genotype. In addition, Fusarium species can release toxic secondary metabolites. These mycotoxins constitute a significant food safety concern as they have health implications in both humans and animals. The Fusarium species involved in FHB differ in their pathogenicity, ability to produce mycotoxins, and fungicide sensitivity. Accurate and exhaustive identification of Fusarium species in planta is therefore of great importance. In this study, using a new set of primers targeting the EF1α gene, the diversity of Fusarium species on cereals was evaluated using Illumina high-throughput sequencing. The PCR amplification parameters and bioinformatic pipeline were optimized with mock and artificially infected grain communities and further tested on 65 field samples. Fusarium species were retrieved from mock communities and good reproducibility between different runs or PCR cycle numbers was be observed. The method enabled the detection of as few as one single Fusarium-infected grain in 10,000. Up to 17 different Fusarium species were detected in field samples of barley, durum and soft wheat harvested in France. This new set of primers enables the assessment of Fusarium diversity by high-throughput sequencing on cereal samples. It provides a more exhaustive picture of the Fusarium community than the currently used techniques based on isolation or species-specific PCR detection. This new experimental approach may be used to show changes in the composition of the Fusarium complex or to detect the emergence of new Fusarium species as far as the EF1α sequence of these species show a sufficient amount of polymorphism in the portion of sequence analyzed. Information on the distribution and prevalence of the different Fusarium species in a given geographical area, and in response to various environmental factors, is of great interest for managing the disease and predicting mycotoxin contamination risks.


Assuntos
Código de Barras de DNA Taxonômico , Grão Comestível/microbiologia , Fusarium/genética , Variação Genética , Fator 1 de Elongação de Peptídeos/genética , Primers do DNA/metabolismo , DNA Fúngico/genética , Especificidade da Espécie
8.
BMC Bioinformatics ; 9: 456, 2008 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-18954438

RESUMO

BACKGROUND: The increasing availability of fungal genome sequences provides large numbers of proteins for evolutionary and phylogenetic analyses. However the heterogeneity of data, including the quality of genome annotation and the difficulty of retrieving true orthologs, makes such investigations challenging. The aim of this study was to provide a reliable and integrated resource of orthologous gene families to perform comparative and phylogenetic analyses in fungi. DESCRIPTION: FUNYBASE is a database dedicated to the analysis of fungal single-copy genes extracted from available fungal genomes sequences, their classification into reliable clusters of orthologs, and the assessment of their informative value for phylogenetic reconstruction based on amino acid sequences. The current release of FUNYBASE contains two types of protein data: (i) a complete set of protein sequences extracted from 30 public fungal genomes and classified into clusters of orthologs using a robust automated procedure, and (ii) a subset of 246 reliable ortholog clusters present as single copy genes in 21 fungal genomes. For each of these 246 ortholog clusters, phylogenetic trees were reconstructed based on their amino acid sequences. To assess the informative value of each ortholog cluster, each was compared to a reference species tree constructed using a concatenation of roughly half of the 246 sequences that are best approximated by the WAG evolutionary model. The orthologs were classified according to a topological score, which measures their ability to recover the same topology as the reference species tree. The full results of these analyses are available on-line with a user-friendly interface that allows for searches to be performed by species name, the ortholog cluster, various keywords, or using the BLAST algorithm. Examples of fruitful utilization of FUNYBASE for investigation of fungal phylogenetics are also presented. CONCLUSION: FUNYBASE constitutes a novel and useful resource for two types of analyses: (i) comparative studies can be greatly facilitated by reliable clusters of orthologs across sets of user-defined fungal genomes, and (ii) phylogenetic reconstruction can be improved by identifying genes with the highest informative value at the desired taxonomic level.


Assuntos
Bases de Dados Genéticas , Genoma Fúngico , Genômica/métodos , Armazenamento e Recuperação da Informação/métodos , Filogenia , Algoritmos , Bases de Dados de Proteínas , Evolução Molecular , Fungos/genética , Genes Fúngicos
9.
Genetics ; 172(4): 2405-19, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16452148

RESUMO

We report on the construction of a linkage map for brown trout (Salmo trutta) and its comparison with those of other tetraploid-derivative fish in the family Salmonidae, including Atlantic salmon (Salmo salar), rainbow trout (Oncorhynchus mykiss), and Arctic char (Salvelinus alpinus). Overall, we identified 37 linkage groups (2n = 80) from the analysis of 288 microsatellite polymorphisms, 13 allozyme markers, and phenotypic sex in four backcross families. Additionally, we used gene-centromere analysis to approximate the position of the centromere for 20 linkage groups and thus relate linkage arrangements to the physical morphology of chromosomes. Sex-specific maps derived from multiple parents were estimated to cover 346.4 and 912.5 cM of the male and female genomes, respectively. As previously observed in other salmonids, recombination rates showed large sex differences (average female-to-male ratio was 6.4), with male crossovers generally localized toward the distal end of linkage groups. Putative homeologous regions inherited from the salmonid tetraploid ancestor were identified for 10 pairs of linkage groups, including five chromosomes showing evidence of residual tetrasomy (pseudolinkage). Map alignments with orthologous regions in Atlantic salmon, rainbow trout, and Arctic char also revealed extensive conservation of syntenic blocks across species, which was generally consistent with chromosome divergence through Robertsonian translocations.


Assuntos
Ligação Genética , Genoma , Salmão/genética , Animais , Mapeamento Cromossômico , Feminino , Masculino , Repetições de Microssatélites , Oncorhynchus/genética , Recombinação Genética , Salmo salar/genética , Fatores Sexuais , Especificidade da Espécie
10.
Pest Manag Sci ; 63(7): 688-98, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17511023

RESUMO

In France, as in many other European countries, Mycosphaerella graminicola (Fuckel) Schröter in Cohn (anamorph Septoria tritici), the causal agent of wheat leaf blotch, is controlled by foliar applications of fungicides. With the recent generalization of resistance to strobilurins (QoIs), reliable control is mainly dependent upon inhibitors of sterol 14 alpha-demethylation (DMIs). To date, strains with reduced sensitivity to DMIs are widespread, but disease control using members of this class of sterol biosynthesis inhibitors has not been compromised. In this study, sensitivity assays based on in vitro effects of fungicides towards germ-tube elongation allowed the characterization of seven DMI-resistant phenotypes. In four of them, cross-resistance was not observed between all tested DMIs; this characteristic concerned prochloraz, triflumizole, fluquinconazole and tebuconazole. Moreover, the highest resistant factors to most DMIs were found only in recent isolates; according to their response towards prochloraz, they were classified into two categories. Molecular studies showed that DMI resistance was associated with mutations in the CYP51 gene encoding the sterol 14 alpha-demethylase. Alterations at codons 459, 460 and 461 were related to low resistance levels, whereas, at position 381, a valine instead of an isoleucine, in combination with the previous changes, determined the highest resistance levels to all DMIs except prochloraz. Mutations in codons 316 and 317 were also found in some isolates exhibiting low resistance factors towards most DMIs.


Assuntos
Ascomicetos/genética , Sistema Enzimático do Citocromo P-450/genética , Farmacorresistência Fúngica/genética , Fungicidas Industriais , Oxirredutases/genética , Triticum/microbiologia , Inibidores das Enzimas do Citocromo P-450 , Mutação , Oxirredutases/antagonistas & inibidores , Fenótipo , Polimorfismo Genético , Esterol 14-Desmetilase
11.
Methods Mol Biol ; 1659: 59-70, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28856641

RESUMO

To combat the ever-increasing threat of wheat yellow rust worldwide, understanding of the pathogen (Puccinia striiformis) population biology is indispensable. Molecular markers, particularly microsatellites, have been reported to be important tools for deciphering pathogen population structure, invasion sources, and migration history. The utility of these DNA-based markers and sequencing has been increased by the direct DNA extraction from infected leaves with subsequent multiplex-based SSR genotyping. In this chapter we describe the protocol for direct DNA extraction and its genotyping with microsatellite markers in multiplex reactions. We describe the procedure for allele scoring, and various troubles faced during microsatellite scoring and potential solutions for them.


Assuntos
Basidiomycota/genética , DNA Fúngico/genética , Técnicas de Genotipagem/métodos , Repetições de Microssatélites , Doenças das Plantas/microbiologia , Triticum/microbiologia , Sequência de Bases , Fracionamento Químico/métodos , DNA Fúngico/isolamento & purificação , Genótipo , Reação em Cadeia da Polimerase/métodos , Esporos Fúngicos/genética
12.
Mol Ecol Resour ; 16(4): 845-61, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26858112

RESUMO

Inferring reproductive and demographic parameters of populations is crucial to our understanding of species ecology and evolutionary potential but can be challenging, especially in partially clonal organisms. Here, we describe a new and accurate method, cloncase, for estimating both the rate of sexual vs. asexual reproduction and the effective population size, based on the frequency of clonemate resampling across generations. Simulations showed that our method provides reliable estimates of sex frequency and effective population size for a wide range of parameters. The cloncase method was applied to Puccinia striiformis f.sp. tritici, a fungal pathogen causing stripe/yellow rust, an important wheat disease. This fungus is highly clonal in Europe but has been suggested to recombine in Asia. Using two temporally spaced samples of P. striiformis f.sp. tritici in China, the estimated sex frequency was 75% (i.e. three-quarter of individuals being sexually derived during the yearly sexual cycle), indicating strong contribution of sexual reproduction to the life cycle of the pathogen in this area. The inferred effective population size of this partially clonal organism (Nc  = 998) was in good agreement with estimates obtained using methods based on temporal variations in allelic frequencies. The cloncase estimator presented herein is the first method allowing accurate inference of both sex frequency and effective population size from population data without knowledge of recombination or mutation rates. cloncase can be applied to population genetic data from any organism with cyclical parthenogenesis and should in particular be very useful for improving our understanding of pest and microbial population biology.


Assuntos
Genética Microbiana/métodos , Genética Populacional/métodos , Genótipo , Densidade Demográfica , Recombinação Genética , Distribuição por Sexo , Basidiomycota/classificação , Basidiomycota/genética , China , Triticum/microbiologia
13.
BMC Res Notes ; 7: 373, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24943709

RESUMO

BACKGROUND: Zymoseptoria tritici is a hemibiotrophic ascomycete fungus causing leaf blotch of wheat that often decreases yield severely. Populations of the fungus are known to be highly diverse and poorly differentiated from each other. However, a genotyping tool is needed to address further questions in large collections of isolates, regarding regional population structure, adaptation to anthropogenic selective pressures, and dynamics of the recently discovered accessory chromosomes. This procedure is limited by costly and time-consuming simplex PCR genotyping. Recent development of genomic approaches and of larger sets of SSRs enabled the optimization of microsatellite multiplexing. FINDINGS: We report here a reliable protocol to amplify 24 SSRs organized in three multiplex panels, and covering all Z. tritici chromosomes. We also propose an automatic allele assignment procedure, which allows scoring alleles in a repeatable manner across studies and laboratories. All together, these tools enabled us to characterize local and worldwide populations and to calculate diversity indexes consistent with results reported in the literature. CONCLUSION: This easy-to-use, accurate, repeatable, economical, and faster technical strategy can provide useful genetic information for evolutionary inferences concerning Z. tritici populations. Moreover, it will facilitate the comparison of studies from different scientific groups.


Assuntos
Genótipo , Plantas/microbiologia , Saccharomycetales/patogenicidade , Saccharomycetales/isolamento & purificação
14.
PLoS One ; 8(1): e53729, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23308280

RESUMO

The gene cluster responsible for the biosynthesis of the red polyketidic pigment bikaverin has only been characterized in Fusarium ssp. so far. Recently, a highly homologous but incomplete and nonfunctional bikaverin cluster has been found in the genome of the unrelated phytopathogenic fungus Botrytis cinerea. In this study, we provided evidence that rare B. cinerea strains such as 1750 have a complete and functional cluster comprising the six genes orthologous to Fusarium fujikuroi ffbik1-ffbik6 and do produce bikaverin. Phylogenetic analysis confirmed that the whole cluster was acquired from Fusarium through a horizontal gene transfer (HGT). In the bikaverin-nonproducing strain B05.10, the genes encoding bikaverin biosynthesis enzymes are nonfunctional due to deleterious mutations (bcbik2-3) or missing (bcbik1) but interestingly, the genes encoding the regulatory proteins BcBIK4 and BcBIK5 do not harbor deleterious mutations which suggests that they may still be functional. Heterologous complementation of the F. fujikuroi Δffbik4 mutant confirmed that bcbik4 of strain B05.10 is indeed fully functional. Deletion of bcvel1 in the pink strain 1750 resulted in loss of bikaverin and overproduction of melanin indicating that the VELVET protein BcVEL1 regulates the biosynthesis of the two pigments in an opposite manner. Although strain 1750 itself expresses a truncated BcVEL1 protein (100 instead of 575 aa) that is nonfunctional with regard to sclerotia formation, virulence and oxalic acid formation, it is sufficient to regulate pigment biosynthesis (bikaverin and melanin) and fenhexamid HydR2 type of resistance. Finally, a genetic cross between strain 1750 and a bikaverin-nonproducing strain sensitive to fenhexamid revealed that the functional bikaverin cluster is genetically linked to the HydR2 locus.


Assuntos
Botrytis/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Melaninas/biossíntese , Família Multigênica , Fatores de Transcrição/genética , Xantonas/metabolismo , Amidas/farmacologia , Botrytis/classificação , Botrytis/efeitos dos fármacos , Farmacorresistência Fúngica/efeitos dos fármacos , Proteínas Fúngicas/metabolismo , Fusarium/classificação , Fusarium/genética , Transferência Genética Horizontal , Teste de Complementação Genética , Loci Gênicos , Melaninas/genética , Mutação , Filogenia , Homologia de Sequência do Ácido Nucleico , Fatores de Transcrição/metabolismo
15.
BMC Res Notes ; 4: 240, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21774816

RESUMO

BACKGROUND: Puccinia striiformis f.sp. tritici (PST), an obligate fungal pathogen causing wheat yellow/stripe rust, a serious disease, has been used to understand the evolution of crop pathogen using molecular markers. However, numerous questions regarding its evolutionary history and recent migration routes still remains to be addressed, which need the genotyping of a large number of isolates, a process that is limited by both DNA extraction and genotyping methods. To address the two issues, we developed here a method for direct DNA extraction from infected leaves combined with optimized SSR multiplexing. FINDINGS: We report here an efficient protocol for direct fungal DNA extraction from infected leaves, avoiding the costly and time consuming step of spore multiplication. The genotyping strategy we propose, amplified a total of 20 SSRs in three Multiplex PCR reactions, which were highly polymorphic and were able to differentiate different PST populations with high efficiency and accuracy. CONCLUSION: These two developments enabled a genotyping strategy that could contribute to the development of molecular epidemiology of yellow rust disease, both at a regional or worldwide scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA