Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 523(7558): 96-100, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-25970242

RESUMO

Deregulated expression of the MYC transcription factor occurs in most human cancers and correlates with high proliferation, reprogrammed cellular metabolism and poor prognosis. Overexpressed MYC binds to virtually all active promoters within a cell, although with different binding affinities, and modulates the expression of distinct subsets of genes. However, the critical effectors of MYC in tumorigenesis remain largely unknown. Here we show that during lymphomagenesis in Eµ-myc transgenic mice, MYC directly upregulates the transcription of the core small nuclear ribonucleoprotein particle assembly genes, including Prmt5, an arginine methyltransferase that methylates Sm proteins. This coordinated regulatory effect is critical for the core biogenesis of small nuclear ribonucleoprotein particles, effective pre-messenger-RNA splicing, cell survival and proliferation. Our results demonstrate that MYC maintains the splicing fidelity of exons with a weak 5' donor site. Additionally, we identify pre-messenger-RNAs that are particularly sensitive to the perturbation of the MYC-PRMT5 axis, resulting in either intron retention (for example, Dvl1) or exon skipping (for example, Atr, Ep400). Using antisense oligonucleotides, we demonstrate the contribution of these splicing defects to the anti-proliferative/apoptotic phenotype observed in PRMT5-depleted Eµ-myc B cells. We conclude that, in addition to its well-documented oncogenic functions in transcription and translation, MYC also safeguards proper pre-messenger-RNA splicing as an essential step in lymphomagenesis.


Assuntos
Regulação Neoplásica da Expressão Gênica , Linfoma/fisiopatologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Precursores de RNA/metabolismo , Splicing de RNA/fisiologia , Animais , Éxons/genética , Células HEK293 , Humanos , Íntrons/genética , Camundongos , Oligonucleotídeos Antissenso/metabolismo , Proteínas Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases , Proteínas Proto-Oncogênicas c-myc/genética
2.
Cytotherapy ; 14(9): 1064-79, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22775077

RESUMO

BACKGROUND AIMS: Mesenchymal stromal cells (MSC) have been observed to participate in tissue repair and to have growth-promoting effects on ex vivo co-culture with other stem cells. METHODS: In order to evaluate the mechanism of MSC support on ex vivo cultures, we performed co-culture of MSC with umbilical cord blood (UCB) mononuclear cells (MNC) (UCB-MNC). RESULTS: Significant enhancement in cell growth correlating with cell viability was noted with MSC co-culture (defined by double-negative staining for Annexin-V and 7-AAD; P < 0.01). This was associated with significant enhancement of mitochondrial membrane potential (P < 0.01). We postulated that intercellular transfer of cytosolic substances between MSC and UCB-MNC could be one mechanism mediating the support. Using MSC endogenously expressing green fluorescent protein (GFP) or labeled with quantum dots (QD), we performed co-culture of UCB-MNC with these MSC. Transfer of these GFP and QD was observed from MSC to UCB-MNC as early as 24 h post co-culture. Transwell experiments revealed that direct contact between MSC and UCB-MNC was necessary for both transfer and viability support. UCB-MNC tightly adherent to the MSC layer exhibited the most optimal transfer and rescue of cell viability. DNA analysis of the viable, GFP transfer-positive UCB-MNC ruled out MSC transdifferentiation or MSC-UCB fusion. In addition, there was statistical correlation between higher levels of cytosolic transfer and enhanced UCB-MNC viability (P < 0.0001). CONCLUSIONS: Collectively, the data suggest that intercellular transfer of cytosolic materials could be one novel mechanism for preventing UCB cell death in MSC co-culture.


Assuntos
Técnicas de Cultura de Células , Citosol/metabolismo , Sangue Fetal/citologia , Leucócitos Mononucleares/citologia , Células-Tronco Mesenquimais/citologia , Animais , Morte Celular/genética , Fusão Celular , Proliferação de Células , Sobrevivência Celular , Transdiferenciação Celular , Técnicas de Cocultura , Proteínas de Fluorescência Verde/análise , Humanos , Potencial da Membrana Mitocondrial , Camundongos , Células NIH 3T3
3.
Nat Commun ; 10(1): 5759, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848333

RESUMO

PRDM9 is a PR domain containing protein which trimethylates histone 3 on lysine 4 and 36. Its normal expression is restricted to germ cells and attenuation of its activity results in altered meiotic gene transcription, impairment of double-stranded breaks and pairing between homologous chromosomes. There is growing evidence for a role of aberrant expression of PRDM9 in oncogenesis and genome instability. Here we report the discovery of MRK-740, a potent (IC50: 80 ± 16 nM), selective and cell-active PRDM9 inhibitor (Chemical Probe). MRK-740 binds in the substrate-binding pocket, with unusually extensive interactions with the cofactor S-adenosylmethionine (SAM), conferring SAM-dependent substrate-competitive inhibition. In cells, MRK-740 specifically and directly inhibits H3K4 methylation at endogenous PRDM9 target loci, whereas the closely related inactive control compound, MRK-740-NC, does not. The discovery of MRK-740 as a chemical probe for the PRDM subfamily of methyltransferases highlights the potential for exploiting SAM in targeting SAM-dependent methyltransferases.


Assuntos
Descoberta de Drogas/métodos , Inibidores Enzimáticos/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Sondas Moleculares/farmacologia , Cristalografia por Raios X , Metilação de DNA/efeitos dos fármacos , Inibidores Enzimáticos/química , Células HEK293 , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/ultraestrutura , Histonas/metabolismo , Humanos , Concentração Inibidora 50 , Simulação de Dinâmica Molecular , Sondas Moleculares/química , Domínios Proteicos , S-Adenosilmetionina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA