Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Reprod ; 37(4): 806-821, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35037941

RESUMO

STUDY QUESTION: Does direct kisspeptin signaling in the oocyte have a role in the control of follicular dynamics and ovulation? SUMMARY ANSWER: Kisspeptin signaling in the oocyte plays a relevant physiological role in the direct control of ovulation; oocyte-specific ablation of kisspeptin receptor, Gpr54, induces a state of premature ovulatory failure in mice that recapitulates some features of premature ovarian insufficiency (POI). WHAT IS KNOWN ALREADY: Kisspeptins, encoded by the Kiss1 gene, are essential for the control of ovulation and fertility, acting primarily on hypothalamic GnRH neurons to stimulate gonadotropin secretion. However, kisspeptins and their receptor, Gpr54, are also expressed in the ovary of different mammalian species, including humans, where their physiological roles remain contentious and poorly characterized. STUDY DESIGN, SIZE, DURATION: A novel mouse line with conditional ablation of Gpr54 in oocytes, named OoGpr54-/-, was generated and studied in terms of follicular and ovulatory dynamics at different age-points of postnatal maturation. A total of 59 OoGpr54-/- mice and 47 corresponding controls were analyzed. In addition, direct RNA sequencing was applied to ovarian samples from 8 OoGpr54-/- and 7 control mice at 6 months of age, and gonadotropin priming for ovulatory induction was conducted in mice (N = 7) from both genotypes. PARTICIPANTS/MATERIALS, SETTING, METHODS: Oocyte-selective ablation of Gpr54 in the oocyte was achieved in vivo by crossing a Gdf9-driven Cre-expressing transgenic mouse line with a Gpr54 LoxP mouse line. The resulting OoGpr54-/- mouse line was subjected to phenotypic, histological, hormonal and molecular analyses at different age-points of postnatal maturation (Day 45, and 2, 4, 6 and 10-11 months of age), in order to characterize the timing of puberty, ovarian follicular dynamics and ovulation, with particular attention to identification of features reminiscent of POI. The molecular signature of ovaries from OoGpr54-/- mice was defined by direct RNA sequencing. Ovulatory responses to gonadotropin priming were also assessed in OoGpr54-/- mice. MAIN RESULTS AND THE ROLE OF CHANCE: Oocyte-specific ablation of Gpr54 caused premature ovulatory failure, with some POI-like features. OoGpr54-/- mice had preserved puberty onset, without signs of hypogonadism. However, already at 2 months of age, 40% of OoGpr54-/- females showed histological features reminiscent of ovarian failure and anovulation. Penetrance of the phenotype progressed with age, with >80% and 100% of OoGpr54-/- females displaying complete ovulatory failure by 6- and 10 months, respectively. This occurred despite unaltered hypothalamic Gpr54 expression and gonadotropin levels. Yet, OoGpr54-/- mice had decreased sex steroid levels. While the RNA signature of OoGpr54-/- ovaries was dominated by the anovulatory state, oocyte-specific ablation of Gpr54 significantly up- or downregulated of a set of 21 genes, including those encoding pituitary adenylate cyclase-activating polypeptide, Wnt-10B, matrix-metalloprotease-12, vitamin A-related factors and calcium-activated chloride channel-2, which might contribute to the POI-like state. Notably, the anovulatory state of young OoGpr54-/- mice could be rescued by gonadotropin priming. LARGE SCALE DATA: N/A. . LIMITATIONS, REASONS FOR CAUTION: Conditional ablation of Gpr54 in oocytes unambiguously caused premature ovulatory failure in mice; yet, the ultimate molecular mechanisms for such state of POI can be only inferred on the basis of RNAseq data and need further elucidation, since some of the molecular changes observed in OoGpr54-/- ovaries were secondary to the anovulatory state. Direct translation of mouse findings to human disease should be made with caution since, despite the conserved expression of Kiss1/kisspeptin and Gpr54 in rodents and humans, our mouse model does not recapitulate all features of common forms of POI. WIDER IMPLICATIONS OF THE FINDINGS: Deregulation of kisspeptin signaling in the oocyte might be an underlying, and previously unnoticed, cause for some forms of POI in women. STUDY FUNDING/COMPETING INTEREST(S): This work was primarily supported by a grant to M.P. and M.T.-S. from the FiDiPro (Finnish Distinguished Professor) Program of the Academy of Finland. Additional financial support came from grant BFU2017-83934-P (M.T.-S.; Ministerio de Economía y Competitividad, Spain; co-funded with EU funds/FEDER Program), research funds from the IVIRMA International Award in Reproductive Medicine (M.T.-S.), and EFSD Albert Renold Fellowship Programme (S.T.R.). The authors have no conflicts of interest to declare in relation to the contents of this work. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Anovulação , Kisspeptinas , Animais , Feminino , Humanos , Kisspeptinas/genética , Mamíferos/metabolismo , Camundongos , Oócitos/metabolismo , Ovulação
2.
PLoS Biol ; 17(11): e3000532, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31697675

RESUMO

Mkrn3, the maternally imprinted gene encoding the makorin RING-finger protein-3, has recently emerged as putative pubertal repressor, as evidenced by central precocity caused by MKRN3 mutations in humans; yet, the molecular underpinnings of this key regulatory action remain largely unexplored. We report herein that the microRNA, miR-30, with three binding sites in a highly conserved region of its 3' UTR, operates as repressor of Mkrn3 to control pubertal onset. Hypothalamic miR-30b expression increased, while Mkrn3 mRNA and protein content decreased, during rat postnatal maturation. Neonatal estrogen exposure, causing pubertal alterations, enhanced hypothalamic Mkrn3 and suppressed miR-30b expression in female rats. Functional in vitro analyses demonstrated a strong repressive action of miR-30b on Mkrn3 3' UTR. Moreover, central infusion during the juvenile period of target site blockers, tailored to prevent miR-30 binding to Mkrn3 3' UTR, reversed the prepubertal down-regulation of hypothalamic Mkrn3 protein and delayed female puberty. Collectively, our data unveil a novel hypothalamic miRNA pathway, involving miR-30, with a prominent role in the control of puberty via Mkrn3 repression. These findings expand our current understanding of the molecular basis of puberty and its disease states.


Assuntos
Hipotálamo/metabolismo , MicroRNAs/fisiologia , Maturidade Sexual/genética , Ubiquitina-Proteína Ligases/genética , Animais , Sítios de Ligação , Linhagem Celular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , MicroRNAs/metabolismo , Ratos , Análise de Sequência de DNA
3.
Am J Physiol Endocrinol Metab ; 320(3): E496-E511, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33427049

RESUMO

Tachykinin (TAC) signaling is an important element in the central control of reproduction. TAC family is mainly composed of substance P (SP), neurokinin A (NKA), and NKB, which bind preferentially to NK1, NK2, and NK3 receptors, respectively. While most studies have focused on the reproductive functions of NKB/NK3R, and to a lesser extent SP/NK1R, the relevance of NK2R, encoded by Tacr2, remains poorly characterized. Here, we address the physiological roles of NK2R in regulating the reproductive axis by characterizing a novel mouse line with congenital ablation of Tacr2. Activation of NK2R evoked acute luteinizing hormone (LH) responses in control mice, similar to those of agonists of NK1R and NK3R. Despite the absence of NK2R, Tacr2-/- mice displayed only partially reduced LH responses to an NK2R agonist, which, nonetheless, were abrogated after blockade of NK3R in Tacr2-/- males. While Tacr2-/- mice displayed normal pubertal timing, LH pulsatility was partially altered in Tacr2-/- females in adulthood, with suppression of basal LH levels, but no changes in the number of LH pulses. In addition, trends for increase in breeding intervals were detected in Tacr2-/- mice. However, null animals of both sexes were fertile, with no changes in estrous cyclicity or sex preference in social behavioral tests. In conclusion, stimulation of NK2R elicited LH responses in mice, while congenital ablation of Tacr2 partially suppressed basal and stimulated LH secretion, with moderate reproductive impact. Our data support a modest, albeit detectable, role of NK2R in the control of the gonadotropic axis, with partially overlapping and redundant functions with other tachykinin receptors.NEW & NOTEWORTHY We have explored here the impact of congenital ablation of the gene (Tacr2) encoding the tachykinin receptor, NK2R, in terms of neuroendocrine control of the reproductive axis, using a novel Tacr2 KO mouse line. Our data support a modest, albeit detectable, role of NK2R in the control of the gonadotropic axis, with partially overlapping and redundant functions with other tachykinin receptors.


Assuntos
Receptores da Neurocinina-2/genética , Reprodução/genética , Animais , Feminino , Hormônios Esteroides Gonadais/metabolismo , Hipotálamo/metabolismo , Hormônio Luteinizante/sangue , Masculino , Camundongos , Camundongos Knockout , Camundongos Obesos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Receptores da Neurocinina-2/deficiência , Reprodução/fisiologia , Transdução de Sinais/genética , Transcriptoma
4.
Proc Natl Acad Sci U S A ; 115(45): E10758-E10767, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30348767

RESUMO

Conditions of metabolic distress, from malnutrition to obesity, impact, via as yet ill-defined mechanisms, the timing of puberty, whose alterations can hamper later cardiometabolic health and even life expectancy. AMP-activated protein kinase (AMPK), the master cellular energy sensor activated in conditions of energy insufficiency, has a major central role in whole-body energy homeostasis. However, whether brain AMPK metabolically modulates puberty onset remains unknown. We report here that central AMPK interplays with the puberty-activating gene, Kiss1, to control puberty onset. Pubertal subnutrition, which delayed puberty, enhanced hypothalamic pAMPK levels, while activation of brain AMPK in immature female rats substantially deferred puberty. Virogenetic overexpression of a constitutively active form of AMPK, selectively in the hypothalamic arcuate nucleus (ARC), which holds a key population of Kiss1 neurons, partially delayed puberty onset and reduced luteinizing hormone levels. ARC Kiss1 neurons were found to express pAMPK, and activation of AMPK reduced ARC Kiss1 expression. The physiological relevance of this pathway was attested by conditional ablation of the AMPKα1 subunit in Kiss1 cells, which largely prevented the delay in puberty onset caused by chronic subnutrition. Our data demonstrate that hypothalamic AMPK signaling plays a key role in the metabolic control of puberty, acting via a repressive modulation of ARC Kiss1 neurons in conditions of negative energy balance.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Desnutrição/metabolismo , Neurônios/metabolismo , Maturidade Sexual/genética , Proteínas Quinases Ativadas por AMP/genética , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Animais Geneticamente Modificados , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Restrição Calórica/efeitos adversos , Estradiol/farmacologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Kisspeptinas/genética , Hormônio Luteinizante/sangue , Desnutrição/genética , Desnutrição/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/efeitos dos fármacos , Ratos , Ratos Wistar , Ribonucleotídeos/farmacologia , Transdução de Sinais , Fatores de Tempo
5.
Neuroendocrinology ; 98(1): 38-50, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23485923

RESUMO

BACKGROUND: VGF (non-acronymic), a protein expressed in the hypothalamus and pituitary, is involved in the control of metabolism and body weight homeostasis. Different active peptide fragments are generated from VGF, including TLQP-21. Previous studies of our group reported that this molecule participates also in the regulation of reproductive function in male rats, with predominant stimulatory effects. METHODS: We report herein a series of studies on the reproductive effects of TLQP-21 in female rats, as evaluated by a combination of in vivo and in vitro analyses. RESULTS: TLQP-21 modestly increased serum LH levels after systemic administration and directly stimulated pituitary LH and FSH secretion in prepubertal female rats, while acute central injection of TLQP-21 was unable to modify LH secretion at this age. Repeated central administration of TLQP-21 during the pubertal transition (between PND-28 and -35) to female rats fed ad libitum advanced the timing of vaginal opening and increased the percentage of animals with signs of ovulation. Moreover, an analogous treatment slightly enhanced ovarian maturation in pubertal female rats subjected to chronic undernutrition, but was unable to rescue the delay of vaginal opening induced by food deprivation. In addition, TLQP-21 oppositely modified LH secretion in adult female rats depending on the stage of the ovarian cycle: it stimulated LH secretion when injected in the morning of diestrus and decreased the magnitude of the preovulatory LH (but not FSH) surge when injected in the afternoon of proestrus. CONCLUSIONS: Our data are the first to document the potential involvement of TLQP-21 in the control of reproductive function in female rats.


Assuntos
Neuropeptídeos/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Reprodução/efeitos dos fármacos , Caracteres Sexuais , Sequência de Aminoácidos , Animais , Feminino , Hormônio Foliculoestimulante/sangue , Homeostase/fisiologia , Hormônio Luteinizante/sangue , Masculino , Microinjeções , Dados de Sequência Molecular , Neuropeptídeos/genética , Fragmentos de Peptídeos/genética , Ratos , Ratos Wistar , Reprodução/fisiologia , Resultado do Tratamento
6.
Metabolism ; 144: 155556, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37121307

RESUMO

BACKGROUND: Kiss1 neurons in the hypothalamic arcuate-nucleus (ARC) play key roles in the control of GnRH pulsatility and fertility. A fraction of ARC Kiss1 neurons, termed KNDy, co-express neurokinin B (NKB; encoded by Tac2). Yet, NKB- and Kiss1-only neurons are also found in the ARC, while a second major Kiss1-neuronal population is present in the rostral hypothalamus. The specific contribution of different Kiss1 neuron sub-sets and kisspeptins originating from them to the control of reproduction and eventually other bodily functions remains to be fully determined. METHODS: To tease apart the physiological roles of KNDy-born kisspeptins, conditional ablation of Kiss1 in Tac2-expressing cells was implemented in vivo. To this end, mice with Tac2 cell-specific Kiss1 KO (TaKKO) were generated and subjected to extensive reproductive and metabolic characterization. RESULTS: TaKKO mice displayed reduced ARC kisspeptin content and Kiss1 expression, with greater suppression in females, which was detectable at infantile-pubertal age. In contrast, Tac2/NKB levels were fully preserved. Despite the drop of ARC Kiss1/kisspeptin, pubertal timing was normal in TaKKO mice of both sexes. However, young-adult TaKKO females displayed disturbed LH pulsatility and sex steroid levels, with suppressed basal LH and pre-ovulatory LH surges, early-onset subfertility and premature ovarian insufficiency. Conversely, testicular histology and fertility were grossly conserved in TaKKO males. Ablation of Kiss1 in Tac2-cells led also to sex-dependent alterations in body composition, glucose homeostasis, especially in males, and locomotor activity, specifically in females. CONCLUSIONS: Our data document that KNDy-born kisspeptins are dispensable/compensable for puberty in both sexes, but required for maintenance of female gonadotropin pulsatility and fertility, as well as for adult metabolic homeostasis. SIGNIFICANCE STATEMENT: Neurons in the hypothalamic arcuate nucleus (ARC) co-expressing kisspeptins and NKB, named KNDy, have been recently suggested to play a key role in pulsatile secretion of gonadotropins, and hence reproduction. However, the relative contribution of this Kiss1 neuronal-subset, vs. ARC Kiss1-only and NKB-only neurons, as well as other Kiss1 neuronal populations, has not been assessed in physiological settings. We report here findings in a novel mouse-model with elimination of KNDy-born kisspeptins, without altering other kisspeptin compartments. Our data highlights the heterogeneity of ARC Kiss1 populations and document that, while dispensable/compensable for puberty, KNDy-born kisspeptins are required for proper gonadotropin pulsatility and fertility, specifically in females, and adult metabolic homeostasis. Characterization of this functional diversity is especially relevant, considering the potential of kisspeptin-based therapies for management of human reproductive disorders.


Assuntos
Gonadotropinas , Kisspeptinas , Masculino , Feminino , Camundongos , Humanos , Animais , Kisspeptinas/genética , Neurônios/metabolismo , Puberdade , Hormônio Liberador de Gonadotropina/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Fertilidade
7.
Metabolism ; 129: 155141, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35074314

RESUMO

BACKGROUND: Perturbations in the timing of puberty, with potential adverse consequences in later health, are increasingly common. The underlying neurohormonal mechanisms are unfolded, but nutritional alterations are key contributors. Efforts to unveil the basis of normal puberty and its metabolic control have focused on mechanisms controlling expression of Kiss1, the gene encoding the puberty-activating neuropeptide, kisspeptin. However, other regulatory phenomena remain ill-defined. Here, we address the putative role of the G protein-coupled-receptor kinase-2, GRK2, in GnRH neurons, as modulator of pubertal timing via repression of the actions of kisspeptin, in normal maturation and conditions of nutritional deficiency. METHODS: Hypothalamic RNA and protein expression analyses were conducted in maturing female rats. Pharmacological studies involved central administration of GRK2 inhibitor, ßARK1-I, and assessment of gonadotropin responses to kisspeptin or phenotypic and hormonal markers of puberty, under normal nutrition or early subnutrition in female rats. In addition, a mouse line with selective ablation of GRK2 in GnRH neurons, aka G-GRKO, was generated, in which hormonal responses to kisspeptin and puberty onset were monitored, in normal conditions and after nutritional deprivation. RESULTS: Hypothalamic GRK2 expression increased along postnatal maturation in female rats, especially in the preoptic area, where most GnRH neurons reside, but decreased during the juvenile-to-pubertal transition. Blockade of GRK2 activity enhanced Ca+2 responses to kisspeptin in vitro, while central inhibition of GRK2 in vivo augmented gonadotropin responses to kisspeptin and advanced puberty onset. Postnatal undernutrition increased hypothalamic GRK2 expression and delayed puberty onset, the latter being partially reversed by central GRK2 inhibition. Conditional ablation of GRK2 in GnRH neurons enhanced gonadotropin responses to kisspeptin, accelerated puberty onset, and increased LH pulse frequency, while partially prevented the negative impact of subnutrition on pubertal timing and LH pulsatility in mice. CONCLUSIONS: Our data disclose a novel pathway whereby GRK2 negatively regulates kisspeptin actions in GnRH neurons, as major regulatory mechanism for tuning pubertal timing in nutritionally-compromised conditions.


Assuntos
Kisspeptinas , Desnutrição , Animais , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Desnutrição/metabolismo , Camundongos , Neurônios/metabolismo , Ratos , Receptores de Kisspeptina-1/metabolismo , Maturidade Sexual/fisiologia
8.
Nat Commun ; 13(1): 4663, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945211

RESUMO

Kiss1 neurons, producing kisspeptins, are essential for puberty and fertility, but their molecular regulatory mechanisms remain unfolded. Here, we report that congenital ablation of the microRNA-synthesizing enzyme, Dicer, in Kiss1 cells, causes late-onset hypogonadotropic hypogonadism in both sexes, but is compatible with pubertal initiation and preserved Kiss1 neuronal populations at the infantile/juvenile period. Yet, failure to complete puberty and attain fertility is observed only in females. Kiss1-specific ablation of Dicer evokes disparate changes of Kiss1-cell numbers and Kiss1/kisspeptin expression between hypothalamic subpopulations during the pubertal-transition, with a predominant decline in arcuate-nucleus Kiss1 levels, linked to enhanced expression of its repressors, Mkrn3, Cbx7 and Eap1. Our data unveil that miRNA-biosynthesis in Kiss1 neurons is essential for pubertal completion and fertility, especially in females, but dispensable for initial reproductive maturation and neuronal survival in both sexes. Our results disclose a predominant miRNA-mediated inhibitory program of repressive signals that is key for precise regulation of Kiss1 expression and, thereby, reproductive function.


Assuntos
RNA Helicases DEAD-box/metabolismo , Kisspeptinas , Ribonuclease III/metabolismo , Animais , Feminino , Fertilidade , Kisspeptinas/genética , Kisspeptinas/metabolismo , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Neurônios/metabolismo , Ribonuclease III/genética , Maturidade Sexual/genética
9.
J Neurosci ; 30(23): 7783-92, 2010 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-20534827

RESUMO

The hypothalamic peptide, nesfatin-1, derived from the precursor NEFA/nucleobindin 2 (NUCB2), was recently identified as anorexigenic signal, acting in a leptin-independent manner. Yet its participation in the regulation of other biological functions gated by body energy status remains unexplored. We show herein that NUCB2/nesfatin-1 is involved in the control of female puberty. NUCB2/nesfatin mRNA and protein were detected at the hypothalamus of pubertal female rats, with prominent signals at lateral hypothalamus (LHA), paraventricular (PVN), and supraoptic (SON) nuclei. Hypothalamic NUCB2 expression raised along pubertal transition, with detectable elevations of its mRNA levels at LHA, PVN, and SON, and threefold increase of its total protein content between late-infantile and peripubertal periods. Conditions of negative energy balance, such as 48 h fasting or sustained subnutrition, decreased hypothalamic NUCB2 mRNA and/or protein levels in pubertal females. At this age, central administration of nesfatin-1 induced modest but significant elevations of circulating gonadotropins, whose magnitude was notably augmented in conditions of food deprivation. Continuous intracerebroventricular infusion of antisense morpholino oligonucleotides (as-MONs) against NUCB2 along pubertal maturation, which markedly reduced hypothalamic NUCB2 protein content, delayed vaginal opening and decreased ovarian weights and serum luteinizing hormone (LH) levels. In contrast, in adult female rats, intracerebroventricular injection of nesfatin did not stimulate LH or follicle-stimulating hormone secretion; neither did central as-MON infusion alter preovulatory gonadotropin surges, despite suppression of hypothalamic NUCB2. In sum, our data are the first to disclose the indispensable role of NUCB2/nesfatin-1 in the central networks driving puberty onset, a function that may contribute to its functional coupling to energy homeostasis.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação a DNA/metabolismo , Hipotálamo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/farmacologia , Neuropeptídeos/farmacologia , Maturidade Sexual/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação a DNA/genética , Feminino , Hormônio Foliculoestimulante/sangue , Região Hipotalâmica Lateral/metabolismo , Injeções Intraventriculares , Hormônio Luteinizante/sangue , Proteínas do Tecido Nervoso/administração & dosagem , Proteínas do Tecido Nervoso/genética , Neuropeptídeos/administração & dosagem , Neuropeptídeos/metabolismo , Nucleobindinas , Oligorribonucleotídeos Antissenso/administração & dosagem , Oligorribonucleotídeos Antissenso/farmacologia , Núcleo Hipotalâmico Paraventricular/metabolismo , RNA Mensageiro , Ratos , Ratos Wistar , Núcleo Supraóptico/metabolismo
10.
Am J Physiol Endocrinol Metab ; 300(5): E837-47, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21304062

RESUMO

VGF (nonacronymic) is a 68-kDa protein encoded by the homonymous gene, which is expressed abundantly at the hypothalamus and has been involved in the control of metabolism and body weight homeostasis. Different active peptide fragments are generated from VGF, including TLQP-21. Circumstantial evidence has suggested that VGF might also participate in the control of reproduction. Yet its mechanisms of action and the eventual role of specific VGF-derived peptides on the hypothalamic-pituitary-gonadal (HPG) axis remain unknown. Herein we report a series of studies on the reproductive effects of TLQP-21 as evaluated in male rats by a combination of in vivo and in vitro analyses. Central administration of TLQP-21 induced acute gonadotropin responses in pubertal and adult male rats, likely via stimulation of GnRH secretion, as documented by static incubations of hypothalamic tissue. In addition, in pubertal (but not adult) males, TLQP-21 stimulated LH secretion directly at the pituitary level. Repeated central administration of TLQP-21 to pubertal males subjected to chronic undernutrition was able to ameliorate the hypogonadotropic state induced by food deprivation. In contrast, chronic administration of TLQP-21 to fed males at puberty resulted in partial desensitization and puberty delay. Finally, in adult (but not pubertal) males, TLQP-21 enhanced hCG-stimulated testosterone secretion by testicular tissue in vitro. In summary, our data are the first to document a complex and multifaceted mode of action of TLQP-21 at different levels of the male HPG axis with predominant stimulatory effects, thus providing a tenable basis for the (direct) reproductive role of this VGF-derived peptide.


Assuntos
Depressores do Apetite/farmacologia , Neuropeptídeos/farmacologia , Fragmentos de Peptídeos/farmacologia , Reprodução/efeitos dos fármacos , Animais , Restrição Calórica , Feminino , Hormônio Foliculoestimulante/sangue , Hormônio Liberador de Gonadotropina/metabolismo , Gonadotropinas/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Injeções Intraventriculares , Hormônio Luteinizante/sangue , Masculino , Neuropeptídeos/biossíntese , RNA/biossíntese , RNA/genética , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Maturidade Sexual/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testosterona/metabolismo
11.
Reproduction ; 142(5): 745-55, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21862695

RESUMO

Implantation of a retrogradely shed endometrium during menstruation requires an adequate blood supply, which allows the growth of endometriotic lesions. This suggests that the development of endometriosis can be impaired by inhibiting angiogenesis. The growth of endometriotic foci is impaired by commercial oncological antiangiogenic drugs used to block vascular endothelial growth factor (VEGF) signaling. The dopamine agonist cabergoline (Cb2) inhibits the growth of established endometriosis lesions by exerting antiangiogenic effects through VEGFR2 inactivation. However, the use of ergot-derived Cb2 is associated with an increased incidence of cardiac valve regurgitation. To evaluate the potential usage of non-ergot-derived dopamine agonists for the treatment of human endometriosis, we compared the efficacy of quinagolide with that of Cb2 in preventing angiogenesis and vascularization in a heterologous mouse model of endometriosis. Nude mice whose peritoneum had been implanted with eutopic human endometrial fragments were treated with vehicle, 50  µg/kg per day oral Cb2, or 50 or 200  µg/kg per day quinagolide during a 14-day period. At the end of the treatment period, the implants were excised in order to assess lesion size, cell proliferation, degree of vascularization, and angiogenic gene expression. Neoangiogenesis was inhibited and the size of active endometriotic lesions, cellular proliferation index, and angiogenic gene expression were significantly reduced by both dopamine agonists when compared with the placebo. Given that Cb2 and quinagolide were equally effective in inhibiting angiogenesis and reducing lesion size, these experiments provide the rationale for pilot studies to explore the use of non-ergot-derived dopamine agonists for the treatment of endometriosis in humans.


Assuntos
Modelos Animais de Doenças , Agonistas de Dopamina/farmacologia , Endometriose/patologia , Ergolinas/farmacologia , Camundongos , Doenças Uterinas/patologia , Animais , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/patologia , Cabergolina , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Claviceps/química , Agonistas de Dopamina/isolamento & purificação , Endometriose/metabolismo , Endométrio/irrigação sanguínea , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Endométrio/patologia , Ergolinas/isolamento & purificação , Feminino , Humanos , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Receptores de Dopamina D2/metabolismo , Doenças Uterinas/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
12.
Sci Rep ; 10(1): 16659, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028938

RESUMO

Morphometry and histology are essential approaches for investigation and diagnosis of musculo-skeletal disorders. Despite the advent of revolutionary methods of image analysis and high resolution three-dimensional imaging technology, basic conventional light microscopy still provides an incisive overview of the structure and tissue dynamics of the musculoskeletal system. This is crucial to both preclinical and clinical research, since several clinically relevant processes, such as bone repair, osteoarthritis, and metabolic bone diseases, display distinct, if not pathognomonic, histological features. Due to the particular characteristics of the skeletal tissues (i.e., the existence of mineralized extracellular matrices), a large number of staining methods applicable to either decalcified or undecalcified tissues are available. However, it is usually the case that several staining methods need to be sequentially applied in order to achieve the different endpoints required to fully assess skeletal tissue structure and dynamics, and to allow morphometric quantification. We describe herein a novel staining method, the RGB trichrome, amenable for application to decalcified, paraffin embedded human musculoskeletal tissues. The acronym RGB corresponds to the three primary dyes used: picrosirius Red, fast Green, and alcian Blue. Although these individual pigments are commonly used either isolated, in binary combinations, or as part of more complex polychrome staining methods, when merged in the RGB trichrome staining produce high-quality/high-contrast images, permitting not only clear identification of different tissues (i.e., the different types of cartilage, bone and fibrous connective tissue), but also discrimination between calcified and uncalcified bone and cartilage, as well as an unexpected diversity of shades of color, while displaying singular properties among polychrome staining methods, such as the unveiling of the bone osteocyte dendritic/canalicular network. Hence, we propose the RGB trichrome as simple but highly-reliable tool for the preclinical and clinical study of the musculoskeletal system.


Assuntos
Compostos Azo , Osso e Ossos/patologia , Cartilagem/patologia , Amarelo de Eosina-(YS) , Verde de Metila , Músculo Esquelético/patologia , Biópsia , Neoplasias Ósseas/patologia , Humanos , Processamento de Imagem Assistida por Computador , Coloração e Rotulagem
13.
Cell Metab ; 32(6): 951-966.e8, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33080217

RESUMO

Childhood obesity, especially in girls, is frequently bound to earlier puberty, which is linked to higher disease burden later in life. The mechanisms underlying this association remain elusive. Here we show that brain ceramides participate in the control of female puberty and contribute to its alteration in early-onset obesity in rats. Postnatal overweight caused earlier puberty and increased hypothalamic ceramide content, while pharmacological activation of ceramide synthesis mimicked the pubertal advancement caused by obesity, specifically in females. Conversely, central blockade of de novo ceramide synthesis delayed puberty and prevented the effects of the puberty-activating signal, kisspeptin. This phenomenon seemingly involves a circuit encompassing the paraventricular nucleus (PVN) and ovarian sympathetic innervation. Early-onset obesity enhanced PVN expression of SPTLC1, a key enzyme for ceramide synthesis, and advanced the maturation of the ovarian noradrenergic system. In turn, obesity-induced pubertal precocity was reversed by virogenetic suppression of SPTLC1 in the PVN. Our data unveil a pathway, linking kisspeptin, PVN ceramides, and sympathetic ovarian innervation, as key for obesity-induced pubertal precocity.


Assuntos
Ceramidas/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Ovário/metabolismo , Obesidade Infantil , Puberdade Precoce , Animais , Feminino , Masculino , Obesidade Infantil/complicações , Obesidade Infantil/metabolismo , Puberdade Precoce/etiologia , Puberdade Precoce/metabolismo , Ratos Wistar
14.
Sci Rep ; 7: 46381, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28401948

RESUMO

Puberty is a key developmental event whose primary regulatory mechanisms remain poorly understood. Precise dating of puberty is crucial for experimental (preclinical) studies on its complex neuroendocrine controlling networks. In female laboratory rodents, external signs of puberty, such as vaginal opening (VO) and epithelial cell cornification (i.e., first vaginal estrus, FE), are indirectly related to the maturational state of the ovary and first ovulation, which is the unequivocal marker of puberty. Whereas in rats, VO and FE are almost simultaneous with the first ovulation, these events are not so closely associated in mice. Moreover, external signs of puberty can be uncoupled with first ovulation in both species under certain experimental conditions. We propose herein the Pubertal Ovarian Maturation Score (Pub-score), as novel, reliable method to assess peripubertal ovarian maturation in rats and mice. This method is founded on histological evaluation of pre-pubertal ovarian maturation, based on antral follicle development, and the precise timing of first ovulation, by retrospective dating of maturational and regressive changes in corpora lutea. This approach allows exact timing of puberty within a time-window of at least two weeks after VO in both species, thus facilitating the identification and precise dating of advanced or delayed puberty under various experimental conditions.


Assuntos
Estro/fisiologia , Ovulação/fisiologia , Maturidade Sexual/fisiologia , Vagina/fisiologia , Animais , Animais de Laboratório , Feminino , Camundongos , Ratos , Fatores de Tempo
16.
Nat Neurosci ; 19(6): 835-44, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27135215

RESUMO

A sparse population of a few hundred primarily hypothalamic neurons forms the hub of a complex neuroglial network that controls reproduction in mammals by secreting the 'master molecule' gonadotropin-releasing hormone (GnRH). Timely postnatal changes in GnRH expression are essential for puberty and adult fertility. Here we report that a multilayered microRNA-operated switch with built-in feedback governs increased GnRH expression during the infantile-to-juvenile transition and that impairing microRNA synthesis in GnRH neurons leads to hypogonadotropic hypogonadism and infertility in mice. Two essential components of this switch, miR-200 and miR-155, respectively regulate Zeb1, a repressor of Gnrh transcriptional activators and Gnrh itself, and Cebpb, a nitric oxide-mediated repressor of Gnrh that acts both directly and through Zeb1, in GnRH neurons. This alteration in the delicate balance between inductive and repressive signals induces the normal GnRH-fuelled run-up to correct puberty initiation, and interfering with this process disrupts the neuroendocrine control of reproduction.


Assuntos
Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , MicroRNAs/metabolismo , Reprodução/fisiologia , Maturidade Sexual/fisiologia , Envelhecimento , Animais , Fertilidade/fisiologia , Hipogonadismo/metabolismo , Hipotálamo/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
17.
Sci Rep ; 6: 19206, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26755241

RESUMO

Kisspeptins, ligands of the receptor, Gpr54, are potent stimulators of puberty and fertility. Yet, whether direct kisspeptin actions on GnRH neurons are sufficient for the whole repertoire of their reproductive effects remains debatable. To dissect out direct vs. indirect effects of kisspeptins on GnRH neurons in vivo, we report herein the detailed reproductive/gonadotropic characterization of a Gpr54 null mouse line with selective re-introduction of Gpr54 expression only in GnRH cells (Gpr54(-/-)Tg; rescued). Despite preserved fertility, adult rescued mice displayed abnormalities in gonadal microstructure, with signs of precocious ageing in females and elevated LH levels with normal-to-low testosterone secretion in males. Gpr54(-/-)Tg rescued mice showed also altered gonadotropin responses to negative feedback withdrawal, while luteinizing hormone responses to various gonadotropic regulators were variably affected, with partially blunted relative (but not absolute) responses to kisspeptin-10, NMDA and the agonist of tachykinin receptors, NK2R. Our data confirm that direct effects of kisspeptins on GnRH cells are sufficient to attain fertility. Yet, such direct actions appear to be insufficient to completely preserve proper functionality of gonadotropic axis, suggesting a role of kisspeptin signaling outside GnRH cells.


Assuntos
Fertilidade/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Animais , Retroalimentação Fisiológica , Feminino , Gonadotropinas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Ovário/metabolismo , Ovário/ultraestrutura , Fenótipo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1 , Reprodução , Testículo/metabolismo
18.
PLoS One ; 10(12): e0144099, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26642206

RESUMO

Initiation of growth of resting ovarian follicles is a key phenomenon for providing an adequate number of mature oocytes in each ovulation, while preventing premature exhaustion of primordial follicle reserve during the reproductive lifespan. Resting follicle dynamics strongly suggest that primordial follicles are under constant inhibitory influences, by mechanisms and factors whose nature remains ill defined. In this work, we aimed to assess the influence of spatial determinants, with special attention to clustering patterns and crowding, on the fate of early follicles in the adult mouse and human ovary. To this end, detailed histological and morphometric analyses, targeting resting and early growing follicles, were conducted in ovaries from mice, either wild type (WT) or genetically modified to lack kisspeptin receptor expression (Kiss1r KO), and healthy adult women. Kiss1r KO mice were studied as model of persistent hypogonadotropism and anovulation. Different qualitative and quantitative indices of the patterns of spatial distribution of resting and early growing follicles in the mouse and human ovary, including the Morisita's index of clustering, were obtained. Our results show that resting primordial follicles display a clear-cut clustered pattern of spatial distribution in adult mouse and human ovaries, and that resting follicle aggrupation is inversely correlated with the proportion of follicles initiating growth and entering into the growing pool. As a whole, our data suggest that resting follicle crowding, defined by changes in density and clustered pattern of distribution, is a major determinant of follicular activation and the fate of ovarian reserve. Uneven follicle crowding would constitute the structural counterpart of the major humoral regulators of early follicular growth, with potential implications in ovarian ageing and pathophysiology.


Assuntos
Anovulação/metabolismo , Hipogonadismo/metabolismo , Folículo Ovariano/crescimento & desenvolvimento , Adolescente , Adulto , Animais , Anovulação/genética , Anovulação/patologia , Feminino , Humanos , Hipogonadismo/genética , Hipogonadismo/patologia , Camundongos , Camundongos Knockout , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1
19.
Reprod Biol Endocrinol ; 1: 26, 2003 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-12646050

RESUMO

We have investigated the effects of indomethacin (IM), a non-steroidal anti-inflammatory drug, and the role of prostaglandins on the accumulation of leukocytes in the rat ovary during the periovulatory period. Adult cycling rats were injected sc with 1 mg of IM in olive oil or vehicle on the morning of proestrus. Some animals were killed at 16:00 h in proestrus. On the evening (19:00 h) of proestrus, IM-treated rats were injected with 500 micrograms of prostaglandin E1 in saline or vehicle. Animals were killed at 01:30 and 09:00 h in estrus. There was an influx of macrophages, neutrophils, and eosinophils into the theca layers of preovulatory follicles, and of neutrophils and eosinophils into the ovarian medulla from 16:00 h in proestrus to 01:30 h in estrus. All these changes, except the accumulation of neutrophils in the theca layers of preovulatory follicles, were blocked by IM treatment. At 09:00 h in estrus, large clusters of neutrophils were observed in IM-treated rats, around abnormally ruptured follicles. The accumulation of leukocytes was not restored by prostaglandin supplementation, despite the inhibition of abnormal follicle rupture and restoration of ovulation in these animals. These results suggest that different mechanisms are involved in leukocyte accumulation in the ovary during the periovulatory period, and that the inhibitory effects of IM on the influx of leukocytes are not dependent on prostaglandin synthesis inhibition.


Assuntos
Quimiotaxia de Leucócito/efeitos dos fármacos , Estro/fisiologia , Indometacina/farmacologia , Leucócitos/efeitos dos fármacos , Ovário/efeitos dos fármacos , Ovulação/fisiologia , Proestro/fisiologia , Antagonistas de Prostaglandina/farmacologia , Alprostadil/farmacologia , Animais , Depressão Química , Eosinófilos/efeitos dos fármacos , Eosinófilos/fisiologia , Feminino , Leucócitos/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Mastócitos/efeitos dos fármacos , Mastócitos/fisiologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/fisiologia , Folículo Ovariano/citologia , Folículo Ovariano/efeitos dos fármacos , Ovário/citologia , Prostaglandinas/fisiologia , Ratos , Ratos Wistar
20.
Reprod Biol Endocrinol ; 2: 63, 2004 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-15345060

RESUMO

Gonadotropin-primed immature rats (GPIR) constitute a widely used model for the study of ovulation. Although the equivalence between the ovulatory process in immature and adult rats is generally assumed, the morphological and functional characteristics of ovulation in immature rats have been scarcely considered. We describe herein the morphological aspects of the ovulatory process in GPIR and their response to classical ovulation inhibitors, such as the inhibitor of prostaglandin (PG) synthesis indomethacin (INDO) and a progesterone (P) receptor (PR) antagonist (RU486). Immature Wistar rats were primed with equine chorionic gonadotropin (eCG) at 21, 23 or 25 days of age, injected with human chorionic gonadotropin (hCG) 48 h later, and sacrificed 16 h after hCG treatment, to assess follicle rupture and ovulation. Surprisingly, GPIR showed age-related ovulatory defects close similar to those in adult rats lacking P and PG actions. Rats primed with eCG at 21 or 23 days of age showed abnormally ruptured corpora lutea in which the cumulus-oocyte complex (COC) was trapped or had been released to the ovarian interstitum, invading the ovarian stroma and blood and lymphatic vessels. Supplementation of immature rats with exogenous P and/or PG of the E series did not significantly inhibit abnormal follicle rupture. Otherwise, ovulatory defects were practically absent in rats primed with eCG at 25 days of age. GPIR treated with INDO showed the same ovulatory alterations than vehicle-treated ones, although affecting to a higher proportion of follicles. Blocking P actions with RU486 increased the number of COC trapped inside corpora lutea and decreased ovulation. The presence of ovulatory defects in GPIR, suggests that the capacity of the immature ovary to undergo the coordinate changes leading to effective ovulation is not fully established in Wistar rats primed with eCG before 25 days of age.


Assuntos
Ovulação/fisiologia , Progesterona/deficiência , Prostaglandinas/deficiência , Fatores Etários , Animais , Feminino , Gonadotropinas Equinas/farmacologia , Indometacina/farmacologia , Mifepristona/farmacologia , Folículo Ovariano/anatomia & histologia , Folículo Ovariano/fisiologia , Ovulação/efeitos dos fármacos , Progesterona/farmacologia , Progesterona/fisiologia , Antagonistas de Prostaglandina/farmacologia , Prostaglandinas/biossíntese , Prostaglandinas/farmacologia , Prostaglandinas/fisiologia , Ratos , Ratos Wistar , Receptores de Progesterona/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA