RESUMO
OBJECTIVE: Individuals with chronic pain due to knee osteoarthritis (OA) are insufficiently physically active, and alterations of facilitatory and inhibitory nociceptive signaling are common in this population. Our objective was to examine the association of these alterations in nociceptive signaling with objective accelerometer-based measures of physical activity in a large observational cohort. DESIGN: We used data from the Multicenter Osteoarthritis Study. Measures of peripheral and central pain sensitivity included pressure pain threshold at the knee and mechanical temporal summation at the wrist, respectively. The presence of descending pain inhibition was assessed by conditioned pain modulation (CPM). Physical activity was quantitatively assessed over 7 days using a lower back-worn activity monitor. Summary metrics included steps/day, activity intensity, and sedentary time. Linear regression analyses were used to evaluate the association of pain sensitivity and the presence of descending pain inhibition with physical activity measures. RESULTS: Data from 1873 participants was analyzed (55.9% female, age = 62.8 ± 10.0 years). People having greater peripheral and central sensitivity showed lower step counts. CPM was not significantly related to any of the physical activity measures, and none of the exposures were significantly related to sedentary time. CONCLUSIONS: In this cohort, greater peripheral and central sensitivity were associated with reduced levels of objectively-assessed daily step counts. Further research may investigate ways to modify or treat heightened pain sensitivity as a means to increase physical activity in older adults with knee OA.
Assuntos
Exercício Físico , Osteoartrite do Joelho , Limiar da Dor , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/fisiopatologia , Osteoartrite do Joelho/complicações , Idoso , Limiar da Dor/fisiologia , Exercício Físico/fisiologia , Medição da Dor , Dor Crônica/fisiopatologia , Acelerometria , Artralgia/fisiopatologiaRESUMO
BACKGROUND: Real-world monitoring using wearable sensors has enormous potential for assessing disease severity and symptoms among persons with Parkinson's disease (PD). Many distinct features can be extracted, reflecting multiple mobility domains. However, it is unclear which digital measures are related to PD severity and are sensitive to disease progression. OBJECTIVES: The aim was to identify real-world mobility measures that reflect PD severity and show discriminant ability and sensitivity to disease progression, compared to the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) scale. METHODS: Multicenter real-world continuous (24/7) digital mobility data from 587 persons with PD and 68 matched healthy controls were collected using an accelerometer adhered to the lower back. Machine learning feature selection and regression algorithms evaluated associations of the digital measures using the MDS-UPDRS (I-III). Binary logistic regression assessed discriminatory value using controls, and longitudinal observational data from a subgroup (n = 33) evaluated sensitivity to change over time. RESULTS: Digital measures were only moderately correlated with the MDS-UPDRS (part II-r = 0.60 and parts I and III-r = 0.50). Most associated measures reflected activity quantity and distribution patterns. A model with 14 digital measures accurately distinguished recently diagnosed persons with PD from healthy controls (81.1%, area under the curve: 0.87); digital measures showed larger effect sizes (Cohen's d: [0.19-0.66]), for change over time than any of the MDS-UPDRS parts (Cohen's d: [0.04-0.12]). CONCLUSIONS: Real-world mobility measures are moderately associated with clinical assessments, suggesting that they capture different aspects of motor capacity and function. Digital mobility measures are sensitive to early-stage disease and to disease progression, to a larger degree than conventional clinical assessments, demonstrating their utility, primarily for clinical trials but ultimately also for clinical care. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Testes de Estado Mental e Demência , Modelos Logísticos , Índice de Gravidade de Doença , Progressão da DoençaRESUMO
BACKGROUND: The performance of an attention-demanding task while walking, i.e., dual-tasking, leads to dual-task costs (e.g., reduced gait speed) in older adults. Previous studies have shown that dual-task costs in gait are associated with future falls and cognitive decline. According to the communication through coherence hypothesis, transcranial alternating current stimulation (tACS) might help alleviate this problem. OBJECTIVE: The aim of this study was to examine the effects of a single session of theta-tACS targeting the left fronto-parietal network (L-FPN) on dual-task walking and cognitive function compared to sham stimulation and transcranial direct current stimulation (tDCS) targeting the left dorsolateral prefrontal cortex, a node within the L-FPN. METHODS: Twenty older adults completed a four-visit, double-blinded, within-subject, cross-over study in which usual-walking, dual-task walking, and cognitive function were evaluated before and immediately after 20 min of tACS, tDCS, or sham (order randomized) stimulation. Dual-task costs to gait speed (primary outcome) and other measures were analyzed. RESULTS: The dual-task cost to gait speed tended to be lower (i.e., better) after tACS (p = 0.067, Cohen's d = 0.433â¼small); tDCS significantly reduced this dual-task cost (p = 0.012, Cohen's d = 0.618â¼medium), and sham stimulation had no effect (p = 0.467). tACS significantly reduced the dual-task cost to step length (p = 0.037, Cohen's d = 0.502â¼medium); a trend was seen after tDCS (p = 0.069, Cohen's d = 0.443â¼small). No statistical differences were found for other measures of gait or cognitive function. CONCLUSIONS: The positive effects of tACS on dual-task gait speed and step length were roughly similar to those seen with tDCS. These results suggest that tACS affects the fronto-parietal network and, similar to tDCS, tACS may improve dual-tasking. Nonetheless, to achieve larger benefits and differentiate the effects of tACS and tDCS on brain function and dual-task walking in older adults, other stimulation montages and protocols should be tested.
Assuntos
Marcha , Estimulação Transcraniana por Corrente Contínua , Idoso , Humanos , Estudos Cross-Over , Marcha/fisiologia , Projetos Piloto , Estimulação Transcraniana por Corrente Contínua/métodosRESUMO
BACKGROUND: Although digital mobility outcomes (DMOs) can be readily calculated from real-world data collected with wearable devices and ad-hoc algorithms, technical validation is still required. The aim of this paper is to comparatively assess and validate DMOs estimated using real-world gait data from six different cohorts, focusing on gait sequence detection, foot initial contact detection (ICD), cadence (CAD) and stride length (SL) estimates. METHODS: Twenty healthy older adults, 20 people with Parkinson's disease, 20 with multiple sclerosis, 19 with proximal femoral fracture, 17 with chronic obstructive pulmonary disease and 12 with congestive heart failure were monitored for 2.5 h in the real-world, using a single wearable device worn on the lower back. A reference system combining inertial modules with distance sensors and pressure insoles was used for comparison of DMOs from the single wearable device. We assessed and validated three algorithms for gait sequence detection, four for ICD, three for CAD and four for SL by concurrently comparing their performances (e.g., accuracy, specificity, sensitivity, absolute and relative errors). Additionally, the effects of walking bout (WB) speed and duration on algorithm performance were investigated. RESULTS: We identified two cohort-specific top performing algorithms for gait sequence detection and CAD, and a single best for ICD and SL. Best gait sequence detection algorithms showed good performances (sensitivity > 0.73, positive predictive values > 0.75, specificity > 0.95, accuracy > 0.94). ICD and CAD algorithms presented excellent results, with sensitivity > 0.79, positive predictive values > 0.89 and relative errors < 11% for ICD and < 8.5% for CAD. The best identified SL algorithm showed lower performances than other DMOs (absolute error < 0.21 m). Lower performances across all DMOs were found for the cohort with most severe gait impairments (proximal femoral fracture). Algorithms' performances were lower for short walking bouts; slower gait speeds (< 0.5 m/s) resulted in reduced performance of the CAD and SL algorithms. CONCLUSIONS: Overall, the identified algorithms enabled a robust estimation of key DMOs. Our findings showed that the choice of algorithm for estimation of gait sequence detection and CAD should be cohort-specific (e.g., slow walkers and with gait impairments). Short walking bout length and slow walking speed worsened algorithms' performances. Trial registration ISRCTN - 12246987.
Assuntos
Tecnologia Digital , Fraturas Proximais do Fêmur , Humanos , Idoso , Marcha , Caminhada , Velocidade de Caminhada , Modalidades de FisioterapiaRESUMO
BACKGROUND: Measuring mobility in daily life entails dealing with confounding factors arising from multiple sources, including pathological characteristics, patient specific walking strategies, environment/context, and purpose of the task. The primary aim of this study is to propose and validate a protocol for simulating real-world gait accounting for all these factors within a single set of observations, while ensuring minimisation of participant burden and safety. METHODS: The protocol included eight motor tasks at varying speed, incline/steps, surface, path shape, cognitive demand, and included postures that may abruptly alter the participants' strategy of walking. It was deployed in a convenience sample of 108 participants recruited from six cohorts that included older healthy adults (HA) and participants with potentially altered mobility due to Parkinson's disease (PD), multiple sclerosis (MS), proximal femoral fracture (PFF), chronic obstructive pulmonary disease (COPD) or congestive heart failure (CHF). A novelty introduced in the protocol was the tiered approach to increase difficulty both within the same task (e.g., by allowing use of aids or armrests) and across tasks. RESULTS: The protocol proved to be safe and feasible (all participants could complete it and no adverse events were recorded) and the addition of the more complex tasks allowed a much greater spread in walking speeds to be achieved compared to standard straight walking trials. Furthermore, it allowed a representation of a variety of daily life relevant mobility aspects and can therefore be used for the validation of monitoring devices used in real life. CONCLUSIONS: The protocol allowed for measuring gait in a variety of pathological conditions suggests that it can also be used to detect changes in gait due to, for example, the onset or progression of a disease, or due to therapy. TRIAL REGISTRATION: ISRCTN-12246987.
Assuntos
Marcha , Doença de Parkinson , Adulto , Humanos , Caminhada , Velocidade de Caminhada , Projetos de PesquisaRESUMO
Remote assessment of the gait of older adults (OAs) during daily living using wrist-worn sensors has the potential to augment clinical care and mobility research. However, hand movements can degrade gait detection from wrist-sensor recordings. To address this challenge, we developed an anomaly detection algorithm and compared its performance to four previously published gait detection algorithms. Multiday accelerometer recordings from a wrist-worn and lower-back sensor (i.e., the "gold-standard" reference) were obtained in 30 OAs, 60% with Parkinson's disease (PD). The area under the receiver operator curve (AUC) and the area under the precision−recall curve (AUPRC) were used to evaluate the performance of the algorithms. The anomaly detection algorithm obtained AUCs of 0.80 and 0.74 for OAs and PD, respectively, but AUPRCs of 0.23 and 0.31 for OAs and PD, respectively. The best performing detection algorithm, a deep convolutional neural network (DCNN), exhibited high AUCs (i.e., 0.94 for OAs and 0.89 for PD) but lower AUPRCs (i.e., 0.66 for OAs and 0.60 for PD), indicating trade-offs between precision and recall. When choosing a classification threshold of 0.9 (i.e., opting for high precision) for the DCNN algorithm, strong correlations (r > 0.8) were observed between daily living walking time estimates based on the lower-back (reference) sensor and the wrist sensor. Further, gait quality measures were significantly different in OAs and PD compared to healthy adults. These results demonstrate that daily living gait can be quantified using a wrist-worn sensor.
Assuntos
Doença de Parkinson , Idoso , Marcha , Humanos , Aprendizado de Máquina , Doença de Parkinson/diagnóstico , Caminhada , PunhoRESUMO
Optoelectronic stereophotogrammetric (SP) systems are widely used in human movement research for clinical diagnostics, interventional applications, and as a reference system for validating alternative technologies. Regardless of the application, SP systems exhibit different random and systematic errors depending on camera specifications, system setup and laboratory environment, which hinders comparing SP data between sessions and across different systems. While many methods have been proposed to quantify and report the errors of SP systems, they are rarely utilized due to their complexity and need for additional equipment. In response, an easy-to-use quality control (QC) check has been designed that can be completed immediately prior to a data collection. This QC check requires minimal training for the operator and no additional equipment. In addition, a custom graphical user interface ensures automatic processing of the errors in an easy-to-read format for immediate interpretation. On initial deployment in a multicentric study, the check (i) proved to be feasible to perform in a short timeframe with minimal burden to the operator, and (ii) quantified the level of random and systematic errors between sessions and systems, ensuring comparability of data in a variety of protocol setups, including repeated measures, longitudinal studies and multicentric studies.
Assuntos
Movimento , Fotogrametria , Humanos , Controle de QualidadeRESUMO
Freezing of gait (FOG) is a debilitating motor phenomenon that is common among individuals with advanced Parkinson's disease. Objective and sensitive measures are needed to better quantify FOG. The present work addresses this need by leveraging wearable devices and machine-learning methods to develop and evaluate automated detection of FOG and quantification of its severity. Seventy-one subjects with FOG completed a FOG-provoking test while wearing three wearable sensors (lower back and each ankle). Subjects were videotaped before (OFF state) and after (ON state) they took their antiparkinsonian medications. Annotations of the videos provided the "ground-truth" for FOG detection. A leave-one-patient-out validation process with a training set of 57 subjects resulted in 84.1% sensitivity, 83.4% specificity, and 85.0% accuracy for FOG detection. Similar results were seen in an independent test set (data from 14 other subjects). Two derived outcomes, percent time frozen and number of FOG episodes, were associated with self-report of FOG. Bother derived-metrics were higher in the OFF state than in the ON state and in the most challenging level of the FOG-provoking test, compared to the least challenging level. These results suggest that this automated machine-learning approach can objectively assess FOG and that its outcomes are responsive to therapeutic interventions.
Assuntos
Análise da Marcha/instrumentação , Transtornos Neurológicos da Marcha , Aprendizado de Máquina , Doença de Parkinson , Dispositivos Eletrônicos Vestíveis , Idoso , Transtornos Neurológicos da Marcha/diagnóstico , Humanos , Doença de Parkinson/diagnósticoRESUMO
The potential of using wearable technologies for the objective assessment of motor symptoms in Parkinson's disease (PD) has gained prominence recently. Nonetheless, compared to tremor and gait impairment, less emphasis has been placed on the quantification of bradykinesia and rigidity. This review aimed to consolidate the existing research on objective measurement of bradykinesia and rigidity in PD through the use of wearables, focusing on the continuous monitoring of these two symptoms in free-living environments. A search of PubMed was conducted through a combination of keyword and MeSH searches. We also searched the IEEE, Google Scholar, Embase, and Scopus databases to ensure thorough results and to minimize the chances of missing relevant studies. Papers published after the year 2000 with sample sizes greater than five were included. Studies were assessed for quality and information was extracted regarding the devices used and their location on the body, the setting and duration of the study, the "gold standard" used as a reference for validation, the metrics used, and the results of each paper. Thirty-one and eight studies met the search criteria and evaluated bradykinesia and rigidity, respectively. Several studies reported strong associations between wearable-based measures and the gold-standard references for bradykinesia, and, to a lesser extent, rigidity. Only a few, pilot studies investigated the measurement of bradykinesia and rigidity in the home and free-living settings. While the current results are promising for the future of wearables, additional work is needed on their validation and adaptation in ecological, free-living settings. Doing so has the potential to improve the assessment and treatment of motor fluctuations and symptoms of PD more generally through real-time objective monitoring of bradykinesia and rigidity.
Assuntos
Hipocinesia/diagnóstico , Rigidez Muscular/diagnóstico , Doença de Parkinson/diagnóstico , Dispositivos Eletrônicos Vestíveis , HumanosRESUMO
BACKGROUND: Falls are a leading cause of morbidity and mortality among older adults and patients with neurological disease like Parkinson's disease (PD). Self-report of missteps, also referred to as near falls, has been related to fall risk in patients with PD. We developed an objective tool for detecting missteps under real-world, daily life conditions to enhance the evaluation of fall risk and applied this new method to 3 day continuous recordings. METHODS: 40 patients with PD (mean age ± SD: 62.2 ± 10.0 yrs, disease duration: 5.3 ± 3.5 yrs) wore a small device that contained accelerometers and gyroscopes on the lower back while participating in a protocol designed to provoke missteps in the laboratory. Afterwards, the subjects wore the sensor for 3 days as they carried out their routine activities of daily living. An algorithm designed to automatically identify missteps was developed based on the laboratory data and was validated on the 3 days recordings. RESULTS: In the laboratory, we recorded 29 missteps and more than 60 hours of data. When applied to this dataset, the algorithm achieved a 93.1% hit ratio and 98.6% specificity. When we applied this algorithm to the 3 days recordings, patients who reported two falls or more in the 6 months prior to the study (i.e., fallers) were significantly more likely to have a detected misstep during the 3 day recordings (p = 0.010) compared to the non-fallers. CONCLUSIONS: These findings suggest that this novel approach can be applied to detect missteps during daily life among patients with PD and will likely help in the longitudinal assessment of disease progression and fall risk.
Assuntos
Acidentes por Quedas/prevenção & controle , Algoritmos , Marcha/fisiologia , Monitorização Fisiológica/métodos , Doença de Parkinson/fisiopatologia , Acelerometria/instrumentação , Acelerometria/métodos , Idoso , Automação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Monitorização Fisiológica/instrumentação , CaminhadaRESUMO
BACKGROUND: Trait and state physical fatigue (trait-PF and state-PF) negatively impact many people with multiple sclerosis (pwMS) but are challenging symptoms to measure. In this observational study, we explored the role of specific gait and autonomic nervous system (ANS) measures (i.e., heart rate, HR, r-r interval, R-R, HR variability, HRV) in trait-PF and state-PF. METHODS: Forty-eight pwMS [42 ± 1.9 years, 65% female, EDSS 2 (IQR: 0-5.5)] completed the Timed Up and Go test (simple and with dual task, TUG-DT) and the 6-min walk test (6MWT). ANS measures were measured via a POLAR H10 strap. Gait was measured using inertial-measurement units (OPALs, APDM Inc). Trait-PF was evaluated via the Modified Fatigue Impact Scale (MFIS) motor component. State-PF was evaluated via a Visual Analog Scale (VAS) scale before and after the completion of the 6MWT. Multiple linear regression models identified trait-PF and state-PF predictors. RESULTS: Both HR and gait metrics were associated with trait-PF and state-PF. HRV at rest was associated only with state-PF. In models based on the first 3 min of the 6MWT, double support (%) and cadence explained 47% of the trait-PF variance; % change in R-R explained 43% of the state-PF variance. Models based on resting R-R and TUG-DT explained 39% of the state-PF. DISCUSSION: These findings demonstrate that specific gait measures better capture trait-PF, while ANS metrics better capture state-PF. To capture both physical fatigue aspects, the first 3 min of the 6MWT are sufficient. Alternatively, TUG-DT and ANS rest metrics can be used for state-PF prediction in pwMS when the 6MWT is not feasible.
Assuntos
Fadiga , Marcha , Frequência Cardíaca , Esclerose Múltipla , Humanos , Feminino , Masculino , Frequência Cardíaca/fisiologia , Fadiga/fisiopatologia , Fadiga/etiologia , Adulto , Esclerose Múltipla/fisiopatologia , Esclerose Múltipla/complicações , Pessoa de Meia-Idade , Marcha/fisiologia , Sistema Nervoso Autônomo/fisiopatologia , Teste de CaminhadaRESUMO
Step width is vital for gait stability, postural balance control, and fall risk reduction. However, estimating step width typically requires either fixed cameras or a full kinematic body suit of wearable inertial measurement units (IMUs), both of which are often too expensive and time-consuming for clinical application. We thus propose a novel data-augmented deep learning model for estimating step width in individuals with and without neurodegenerative disease using a minimal set of wearable IMUs. Twelve patients with neurodegenerative, clinically diagnosed Spinocerebellar ataxia type 3 (SCA3) performed over ground walking trials, and seventeen healthy individuals performed treadmill walking trials at various speeds and gait modifications while wearing IMUs on each shank and the pelvis. Results demonstrated step width mean absolute errors of 3.3 ± 0.7cm and 2.9 ± 0.5cm for the neurodegenerative and healthy groups, respectively, which were below the minimal clinically important difference of 6.0cm. Step width variability mean absolute errors were 1.5cm and 0.8cm for neurodegenerative and healthy groups, respectively. Data augmentation significantly improved accuracy performance in the neurodegenerative group, likely because they exhibited larger variations in walking kinematics as compared with healthy subjects. These results could enable clinically meaningful and accurate portable step width monitoring for individuals with and without neurodegenerative disease, potentially enhancing rehabilitative training, assessment, and dynamic balance control in clinical and real-life settings.
RESUMO
Freezing of gait (FOG) is a debilitating problem that markedly impairs the mobility and independence of 38-65% of people with Parkinson's disease. During a FOG episode, patients report that their feet are suddenly and inexplicably "glued" to the floor. The lack of a widely applicable, objective FOG detection method obstructs research and treatment. To address this problem, we organized a 3-month machine-learning contest, inviting experts from around the world to develop wearable sensor-based FOG detection algorithms. 1,379 teams from 83 countries submitted 24,862 solutions. The winning solutions demonstrated high accuracy, high specificity, and good precision in FOG detection, with strong correlations to gold-standard references. When applied to continuous 24/7 data, the solutions revealed previously unobserved patterns in daily living FOG occurrences. This successful endeavor underscores the potential of machine learning contests to rapidly engage AI experts in addressing critical medical challenges and provides a promising means for objective FOG quantification.
Assuntos
Algoritmos , Marcha , Aprendizado de Máquina , Doença de Parkinson , Humanos , Marcha/fisiologia , Doença de Parkinson/diagnóstico , Doença de Parkinson/fisiopatologia , Dispositivos Eletrônicos Vestíveis , Transtornos Neurológicos da Marcha/diagnóstico , Transtornos Neurológicos da Marcha/fisiopatologia , Masculino , FemininoRESUMO
OBJECTIVE: The objective of this study was to identify gait alterations related to worsening knee pain and worsening physical function, using machine learning approaches applied to wearable sensor-derived data from a large observational cohort. METHODS: Participants in the Multicenter Osteoarthritis Study (MOST) completed a 20-m walk test wearing inertial sensors on their lower back and ankles. Parameters describing spatiotemporal features of gait were extracted from these data. We used an ensemble machine learning technique ("super learning") to optimally discriminate between those with and without worsening physical function and, separately, those with and without worsening pain over two years. We then used log-binomial regression to evaluate associations of the top 10 influential variables selected with super learning with each outcome. We also assessed whether the relation of altered gait with worsening function was mediated by changes in pain. RESULTS: Of 2,324 participants, 29% and 24% had worsening knee pain and function over two years, respectively. From the super learner, several gait parameters were found to be influential for worsening pain and for worsening function. After adjusting for confounders, greater gait asymmetry, longer average step length, and lower dominant frequency were associated with worsening pain, and lower cadence was associated with worsening function. Worsening pain partially mediated the association of cadence with function. CONCLUSION: We identified gait alterations associated with worsening knee pain and those associated with worsening physical function. These alterations could be assessed with wearable sensors in clinical settings. Further research should determine whether they might be therapeutic targets to prevent worsening pain and worsening function.
Assuntos
Artralgia , Marcha , Aprendizado de Máquina , Osteoartrite do Joelho , Dispositivos Eletrônicos Vestíveis , Humanos , Feminino , Masculino , Osteoartrite do Joelho/fisiopatologia , Idoso , Pessoa de Meia-Idade , Marcha/fisiologia , Artralgia/fisiopatologia , Artralgia/diagnóstico , Articulação do Joelho/fisiopatologia , Medição da Dor , Progressão da Doença , Estado Funcional , Teste de Caminhada , Análise da Marcha/instrumentação , Estados Unidos/epidemiologia , Valor Preditivo dos TestesRESUMO
Step length is an important diagnostic and prognostic measure of health and disease. Wearable devices can estimate step length continuously (e.g., in clinic or real-world settings), however, the accuracy of current estimation methods is not yet optimal. We developed machine-learning models to estimate step length based on data derived from a single lower-back inertial measurement unit worn by 472 young and older adults with different neurological conditions, including Parkinson's disease and healthy controls. Studying more than 80,000 steps, the best model showed high accuracy for a single step (root mean square error, RMSE = 6.08 cm, ICC(2,1) = 0.89) and higher accuracy when averaged over ten consecutive steps (RMSE = 4.79 cm, ICC(2,1) = 0.93), successfully reaching the predefined goal of an RMSE below 5 cm (often considered the minimal-clinically-important-difference). Combining machine-learning with a single, wearable sensor generates accurate step length measures, even in patients with neurologic disease. Additional research may be needed to further reduce the errors in certain conditions.
RESUMO
This study aimed to validate a wearable device's walking speed estimation pipeline, considering complexity, speed, and walking bout duration. The goal was to provide recommendations on the use of wearable devices for real-world mobility analysis. Participants with Parkinson's Disease, Multiple Sclerosis, Proximal Femoral Fracture, Chronic Obstructive Pulmonary Disease, Congestive Heart Failure, and healthy older adults (n = 97) were monitored in the laboratory and the real-world (2.5 h), using a lower back wearable device. Two walking speed estimation pipelines were validated across 4408/1298 (2.5 h/laboratory) detected walking bouts, compared to 4620/1365 bouts detected by a multi-sensor reference system. In the laboratory, the mean absolute error (MAE) and mean relative error (MRE) for walking speed estimation ranged from 0.06 to 0.12 m/s and - 2.1 to 14.4%, with ICCs (Intraclass correlation coefficients) between good (0.79) and excellent (0.91). Real-world MAE ranged from 0.09 to 0.13, MARE from 1.3 to 22.7%, with ICCs indicating moderate (0.57) to good (0.88) agreement. Lower errors were observed for cohorts without major gait impairments, less complex tasks, and longer walking bouts. The analytical pipelines demonstrated moderate to good accuracy in estimating walking speed. Accuracy depended on confounding factors, emphasizing the need for robust technical validation before clinical application.Trial registration: ISRCTN - 12246987.
Assuntos
Velocidade de Caminhada , Dispositivos Eletrônicos Vestíveis , Humanos , Idoso , Marcha , Caminhada , Projetos de PesquisaRESUMO
BACKGROUND: Wrist-worn inertial sensors are used in digital health for evaluating mobility in real-world environments. Preceding the estimation of spatiotemporal gait parameters within long-term recordings, gait detection is an important step to identify regions of interest where gait occurs, which requires robust algorithms due to the complexity of arm movements. While algorithms exist for other sensor positions, a comparative validation of algorithms applied to the wrist position on real-world data sets across different disease populations is missing. Furthermore, gait detection performance differences between the wrist and lower back position have not yet been explored but could yield valuable information regarding sensor position choice in clinical studies. OBJECTIVE: The aim of this study was to validate gait sequence (GS) detection algorithms developed for the wrist position against reference data acquired in a real-world context. In addition, this study aimed to compare the performance of algorithms applied to the wrist position to those applied to lower back-worn inertial sensors. METHODS: Participants with Parkinson disease, multiple sclerosis, proximal femoral fracture (hip fracture recovery), chronic obstructive pulmonary disease, and congestive heart failure and healthy older adults (N=83) were monitored for 2.5 hours in the real-world using inertial sensors on the wrist, lower back, and feet including pressure insoles and infrared distance sensors as reference. In total, 10 algorithms for wrist-based gait detection were validated against a multisensor reference system and compared to gait detection performance using lower back-worn inertial sensors. RESULTS: The best-performing GS detection algorithm for the wrist showed a mean (per disease group) sensitivity ranging between 0.55 (SD 0.29) and 0.81 (SD 0.09) and a mean (per disease group) specificity ranging between 0.95 (SD 0.06) and 0.98 (SD 0.02). The mean relative absolute error of estimated walking time ranged between 8.9% (SD 7.1%) and 32.7% (SD 19.2%) per disease group for this algorithm as compared to the reference system. Gait detection performance from the best algorithm applied to the wrist inertial sensors was lower than for the best algorithms applied to the lower back, which yielded mean sensitivity between 0.71 (SD 0.12) and 0.91 (SD 0.04), mean specificity between 0.96 (SD 0.03) and 0.99 (SD 0.01), and a mean relative absolute error of estimated walking time between 6.3% (SD 5.4%) and 23.5% (SD 13%). Performance was lower in disease groups with major gait impairments (eg, patients recovering from hip fracture) and for patients using bilateral walking aids. CONCLUSIONS: Algorithms applied to the wrist position can detect GSs with high performance in real-world environments. Those periods of interest in real-world recordings can facilitate gait parameter extraction and allow the quantification of gait duration distribution in everyday life. Our findings allow taking informed decisions on alternative positions for gait recording in clinical studies and public health. TRIAL REGISTRATION: ISRCTN Registry 12246987; https://www.isrctn.com/ISRCTN12246987. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.1136/bmjopen-2021-050785.
RESUMO
Background: This study aimed to explore the acceptability of a wearable device for remotely measuring mobility in the Mobilise-D technical validation study (TVS), and to explore the acceptability of using digital tools to monitor health. Methods: Participants (N = 106) in the TVS wore a waist-worn device (McRoberts Dynaport MM + ) for one week. Following this, acceptability of the device was measured using two questionnaires: The Comfort Rating Scale (CRS) and a previously validated questionnaire. A subset of participants (n = 36) also completed semi-structured interviews to further determine device acceptability and to explore their opinions of the use of digital tools to monitor their health. Questionnaire results were analysed descriptively and interviews using a content analysis. Results: The device was considered both comfortable (median CRS (IQR; min-max) = 0.0 (0.0; 0-20) on a scale from 0-20 where lower scores signify better comfort) and acceptable (5.0 (0.5; 3.0-5.0) on a scale from 1-5 where higher scores signify better acceptability). Interviews showed it was easy to use, did not interfere with daily activities, and was comfortable. The following themes emerged from participants' as being important to digital technology: altered expectations for themselves, the use of technology, trust, and communication with healthcare professionals. Conclusions: Digital tools may bridge existing communication gaps between patients and clinicians and participants are open to this. This work indicates that waist-worn devices are supported, but further work with patient advisors should be undertaken to understand some of the key issues highlighted. This will form part of the ongoing work of the Mobilise-D consortium.
RESUMO
Walking activity and gait parameters are considered among the most relevant mobility-related parameters. Currently, gait assessments have been mainly analyzed in laboratory or hospital settings, which only partially reflect usual performance (i.e., real world behavior). In this study, we aim to validate a robust walking detection algorithm using a single foot-worn inertial measurement unit (IMU) in real-life settings. We used a challenging dataset including 18 individuals performing free-living activities. A multi-sensor wearable system including pressure insoles, multiple IMUs, and infrared distance sensors (INDIP) was used as reference. Accurate walking detection was obtained, with sensitivity and specificity of 98 and 91% respectively. As robust walking detection is needed for ambulatory monitoring to complete the processing pipeline from raw recorded data to walking/mobility outcomes, a validated algorithm would pave the way for assessing patient performance and gait quality in real-world conditions.