RESUMO
PurposeHemiplegia is a subtype of cerebral palsy (CP) in which one side of the body is affected. Our earlier study of unselected children with CP demonstrated de novo and clinically relevant rare inherited genomic copy-number variations (CNVs) in 9.6% of participants. Here, we examined the prevalence and types of CNVs specifically in hemiplegic CP.MethodsWe genotyped 97 unrelated probands with hemiplegic CP and their parents. We compared their CNVs to those of 10,851 population controls, in order to identify rare CNVs (<0.1% frequency) that might be relevant to CP. We also sequenced exomes of "CNV-positive" trios.ResultsWe detected de novo CNVs and/or sex chromosome abnormalities in 7/97 (7.2%) of probands, impacting important developmental genes such as GRIK2, LAMA1, DMD, PTPRM, and DIP2C. In 18/97 individuals (18.6%), rare inherited CNVs were found, affecting loci associated with known genomic disorders (17p12, 22q11.21) or involving genes linked to neurodevelopmental disorders.ConclusionWe found an increased rate of de novo CNVs in the hemiplegic CP subtype (7.2%) compared to controls (1%). This result is similar to that for an unselected CP group. Combined with rare inherited CNVs, the genomic data impacts the understanding of the potential etiology of hemiplegic CP in 23/97 (23.7%) of participants.
Assuntos
Paralisia Cerebral/diagnóstico , Paralisia Cerebral/genética , Variações do Número de Cópias de DNA , Predisposição Genética para Doença , Hemiplegia/diagnóstico , Hemiplegia/genética , Fenótipo , Adolescente , Criança , Pré-Escolar , Aberrações Cromossômicas , Estudos Transversais , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Masculino , Neuroimagem/métodos , Linhagem , Estudos Retrospectivos , Fatores de Risco , Sequenciamento do ExomaRESUMO
BACKGROUND: The pseudoautosomal short stature homeobox-containing (SHOX) gene encodes a homeodomain transcription factor involved in cell-cycle and growth regulation. SHOX/SHOX enhancers deletions cause short stature and skeletal abnormalities in a female-dominant fashion; duplications appear to be rare. Neurodevelopmental disorders (NDDs), such as autism spectrum disorders (ASDs), are complex disorders with high heritability and skewed sex ratio; several rare (<1% frequency) CNVs have been implicated in risk. METHODS: We analysed data from a discovery series of 90 adult ASD cases, who underwent clinical genetic testing by array-comparative genomic hybridisation (CGH). Twenty-seven individuals harboured CNV abnormalities, including two unrelated females with microduplications affecting SHOX. To determine the prevalence of SHOX duplications and delineate their associated phenotypic spectrum, we subsequently examined array-CGH data from a follow-up sample of 26â 574 patients, including 18â 857 with NDD (3541 with ASD). RESULTS: We found a significant enrichment of SHOX microduplications in the NDD cases (p=0.00036; OR 2.21) and, particularly, in those with ASD (p=9.18×10(-7); OR 3.63) compared with 12â 594 population-based controls. SHOX duplications affecting the upstream or downstream enhancers were enriched only in females with NDD (p=0.0043; OR 2.69/p=0.00020; OR 7.20), but not in males (p=0.404; OR 1.38/p=0.096; OR 2.21). CONCLUSIONS: Microduplications at the SHOX locus are a low penetrance risk factor for ASD/NDD, with increased risk in both sexes. However, a concomitant duplication of SHOX enhancers may be required to trigger a NDD in females. Since specific SHOX isoforms are exclusively expressed in the developing foetal brain, this may reflect the pathogenic effect of altered SHOX protein dosage on neurodevelopment.
Assuntos
Transtorno do Espectro Autista/genética , Variações do Número de Cópias de DNA/genética , Duplicação Gênica/genética , Proteínas de Homeodomínio/genética , Transtornos do Neurodesenvolvimento/genética , Regiões Pseudoautossômicas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Hibridização Genômica Comparativa/métodos , Feminino , Testes Genéticos/métodos , Transtornos do Crescimento/genética , Humanos , Masculino , Pessoa de Meia-Idade , Deleção de Sequência/genética , Proteína de Homoeobox de Baixa Estatura , Fatores de Transcrição/genética , Adulto JovemRESUMO
Rare copy number variants (CNVs) disrupting ASTN2 or both ASTN2 and TRIM32 have been reported at 9q33.1 by genome-wide studies in a few individuals with neurodevelopmental disorders (NDDs). The vertebrate-specific astrotactins, ASTN2 and its paralog ASTN1, have key roles in glial-guided neuronal migration during brain development. To determine the prevalence of astrotactin mutations and delineate their associated phenotypic spectrum, we screened ASTN2/TRIM32 and ASTN1 (1q25.2) for exonic CNVs in clinical microarray data from 89 985 individuals across 10 sites, including 64 114 NDD subjects. In this clinical dataset, we identified 46 deletions and 12 duplications affecting ASTN2. Deletions of ASTN1 were much rarer. Deletions near the 3' terminus of ASTN2, which would disrupt all transcript isoforms (a subset of these deletions also included TRIM32), were significantly enriched in the NDD subjects (P = 0.002) compared with 44 085 population-based controls. Frequent phenotypes observed in individuals with such deletions include autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), speech delay, anxiety and obsessive compulsive disorder (OCD). The 3'-terminal ASTN2 deletions were significantly enriched compared with controls in males with NDDs, but not in females. Upon quantifying ASTN2 human brain RNA, we observed shorter isoforms expressed from an alternative transcription start site of recent evolutionary origin near the 3' end. Spatiotemporal expression profiling in the human brain revealed consistently high ASTN1 expression while ASTN2 expression peaked in the early embryonic neocortex and postnatal cerebellar cortex. Our findings shed new light on the role of the astrotactins in psychopathology and their interplay in human neurodevelopment.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtornos Globais do Desenvolvimento Infantil/genética , Glicoproteínas/genética , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Cromossomos Humanos Par 9 , Variações do Número de Cópias de DNA , Éxons , Feminino , Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Glicoproteínas/metabolismo , Humanos , Lactente , Recém-Nascido , Masculino , Proteínas do Tecido Nervoso/metabolismo , Especificidade de Órgãos , Fenótipo , Polimorfismo de Nucleotídeo Único , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Fatores de Risco , Deleção de Sequência , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Adulto JovemRESUMO
The GPHN gene codes for gephyrin, a key scaffolding protein in the neuronal postsynaptic membrane, responsible for the clustering and localization of glycine and GABA receptors at inhibitory synapses. Gephyrin has well-established functional links with several synaptic proteins that have been implicated in genetic risk for neurodevelopmental disorders such as autism spectrum disorder (ASD), schizophrenia and epilepsy including the neuroligins (NLGN2, NLGN4), the neurexins (NRXN1, NRXN2, NRXN3) and collybistin (ARHGEF9). Moreover, temporal lobe epilepsy has been linked to abnormally spliced GPHN mRNA lacking exons encoding the G-domain of the gephyrin protein, potentially arising due to cellular stress associated with epileptogenesis such as temperature and alkalosis. Here, we present clinical and genomic characterization of six unrelated subjects, with a range of neurodevelopmental diagnoses including ASD, schizophrenia or seizures, who possess rare de novo or inherited hemizygous microdeletions overlapping exons of GPHN at chromosome 14q23.3. The region of common overlap across the deletions encompasses exons 3-5, corresponding to the G-domain of the gephyrin protein. These findings, together with previous reports of homozygous GPHN mutations in connection with autosomal recessive molybdenum cofactor deficiency, will aid in clinical genetic interpretation of the GPHN mutation spectrum. Our data also add to the accumulating evidence implicating neuronal synaptic gene products as key molecular factors underlying the etiologies of a diverse range of neurodevelopmental conditions.
Assuntos
Sequência de Bases , Proteínas de Transporte/genética , Cromossomos Humanos Par 14/genética , Éxons , Proteínas de Membrana/genética , Esquizofrenia/genética , Convulsões/genética , Deleção de Sequência , Transtorno Autístico , Proteínas de Ligação ao Cálcio , Proteínas de Transporte/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Cromossomos Humanos Par 14/metabolismo , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Masculino , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa , Splicing de RNA/genética , Receptores de GABA/genética , Receptores de GABA/metabolismo , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho , Esquizofrenia/metabolismo , Convulsões/metabolismo , Membranas Sinápticas/genética , Membranas Sinápticas/metabolismoRESUMO
PURPOSE: Chromosomal microarray analysis to assess copy-number variation has become a first-tier genetic diagnostic test for individuals with unexplained neurodevelopmental disorders or multiple congenital anomalies. More than 100 cytogenetic laboratories worldwide use the new ultra-high resolution Affymetrix CytoScan-HD array to genotype hundreds of thousands of samples per year. Our aim was to develop a copy-number variation resource from a new population sample that would enable more accurate interpretation of clinical genetics data on this microarray platform and others. METHODS: Genotyping of 1,000 adult volunteers who are broadly representative of the Ontario population (as obtained from the Ontario Population Genomics Platform) was performed with the CytoScan-HD microarray system, which has 2.7 million probes. Four independent algorithms were applied to detect copy-number variations. Reproducibility and validation metrics were quantified using sample replicates and quantitative-polymerase chain reaction, respectively. RESULTS: DNA from 873 individuals passed quality control and we identified 71,178 copy-number variations (81 copy-number variations/individual); 9.8% (6,984) of these copy-number variations were previously unreported. After applying three layers of filtering criteria, from our highest confidence copy-number variation data set we obtained >95% reproducibility and >90% validation rates (73% of these copy-number variations overlapped at least one gene). CONCLUSION: The genotype data and annotated copy-number variations for this largely Caucasian population will represent a valuable public resource enabling clinical genetics research and diagnostics.
Assuntos
Variações do Número de Cópias de DNA , Bases de Dados Genéticas , Genética Populacional/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Algoritmos , Cromossomos , Anormalidades Congênitas/genética , Curadoria de Dados , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos do Neurodesenvolvimento/genética , Reprodutibilidade dos TestesRESUMO
IMPORTANCE: The use of genome-wide tests to provide molecular diagnosis for individuals with autism spectrum disorder (ASD) requires more study. OBJECTIVE: To perform chromosomal microarray analysis (CMA) and whole-exome sequencing (WES) in a heterogeneous group of children with ASD to determine the molecular diagnostic yield of these tests in a sample typical of a developmental pediatric clinic. DESIGN, SETTING, AND PARTICIPANTS: The sample consisted of 258 consecutively ascertained unrelated children with ASD who underwent detailed assessments to define morphology scores based on the presence of major congenital abnormalities and minor physical anomalies. The children were recruited between 2008 and 2013 in Newfoundland and Labrador, Canada. The probands were stratified into 3 groups of increasing morphological severity: essential, equivocal, and complex (scores of 0-3, 4-5, and ≥6). EXPOSURES: All probands underwent CMA, with WES performed for 95 proband-parent trios. MAIN OUTCOMES AND MEASURES: The overall molecular diagnostic yield for CMA and WES in a population-based ASD sample stratified in 3 phenotypic groups. RESULTS: Of 258 probands, 24 (9.3%, 95%CI, 6.1%-13.5%) received a molecular diagnosis from CMA and 8 of 95 (8.4%, 95%CI, 3.7%-15.9%) from WES. The yields were statistically different between the morphological groups. Among the children who underwent both CMA and WES testing, the estimated proportion with an identifiable genetic etiology was 15.8% (95%CI, 9.1%-24.7%; 15/95 children). This included 2 children who received molecular diagnoses from both tests. The combined yield was significantly higher in the complex group when compared with the essential group (pairwise comparison, P = .002). [table: see text]. CONCLUSIONS AND RELEVANCE: Among a heterogeneous sample of children with ASD, the molecular diagnostic yields of CMA and WES were comparable, and the combined molecular diagnostic yield was higher in children with more complex morphological phenotypes in comparison with the children in the essential category. If replicated in additional populations, these findings may inform appropriate selection of molecular diagnostic testing for children affected by ASD.
Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Exoma , Análise em Microsséries/métodos , Técnicas de Diagnóstico Molecular/métodos , Síndrome de Asperger/diagnóstico , Síndrome de Asperger/genética , Transtorno Autístico/diagnóstico , Transtorno Autístico/genética , Criança , Transtornos Globais do Desenvolvimento Infantil/diagnóstico , Transtornos Globais do Desenvolvimento Infantil/patologia , Pré-Escolar , Feminino , Humanos , Masculino , Análise em Microsséries/estatística & dados numéricos , Técnicas de Diagnóstico Molecular/estatística & dados numéricos , Mutação , Análise de Sequência com Séries de Oligonucleotídeos/estatística & dados numéricos , Fenótipo , Análise de Sequência de DNA/métodos , Análise de Sequência de Proteína/métodosRESUMO
New genomic disorders associated with large, rare, recurrent copy number variations (CNVs) are being discovered at a rapid pace. Detailed phenotyping and family studies are rare, however, as are data on adult phenotypic expression. Duplications at 2q13 were recently identified as risk factors for developmental delay/autism and reported in the prenatal setting, yet few individuals (all children) have been extensively phenotyped. During a genome-wide CNV study of schizophrenia, we identified two unrelated probands with 2q13 duplications. In this study, detailed phenotyping and genotyping using high-resolution microarrays was performed for 12 individuals across their two families. 2q13 duplications were present in six adults, and co-segregated with clinically significant later-onset neuropsychiatric disorders. Convergent lines of evidence implicated GABAminergic dysfunction. Analysis of the genic content revealed promising candidates for neuropsychiatric disease, including BCL2L11, ANAPC1, and MERTK. Intrafamilial genetic heterogeneity and "second hits" in one family may have been the consequence of assortative mating. Clinical genetic testing for the 2q13 duplication and the associated genetic counseling was well received. In summary, large rare 2q13 duplications appear to be associated with variable adult neuropsychiatric and other expression. The findings represent progress toward clinical translation of research results in schizophrenia. There are implications for other emerging genomic disorders where there is interest in lifelong expression.
Assuntos
Duplicação Cromossômica/genética , Segregação de Cromossomos/genética , Cromossomos Humanos Par 2/genética , Testes Neuropsicológicos , Adulto , Variações do Número de Cópias de DNA/genética , Família , Feminino , Aconselhamento Genético , Testes Genéticos , Genótipo , Humanos , Masculino , Linhagem , FenótipoRESUMO
Obesity is a multifactorial condition that is highly heritable. There have been ~60 susceptibility loci identified, but they only account for a fraction of cases. As copy number variations (CNVs) have been implicated in the etiology of a multitude of human disorders including obesity, here, we investigated the contribution of rare (<1% population frequency) CNVs in pediatric cases of obesity. We genotyped 67 such individuals, including 22 with co-morbid developmental delay and prioritized rare CNVs at known obesity-associated loci, as well as, those impacting genes involved in energy homeostasis or related processes. We identified clinically relevant or potentially clinically relevant CNVs in 15% (10/67) of individuals. Of these, 4% (3/67) had 16p11.2 microdeletions encompassing the known obesity risk gene SH2B1. Notably, we identified two unrelated probands harboring different 6p22.2 microduplications encompassing SCGN, a potential novel candidate gene for obesity. Further, we identified other biologically relevant candidate genes for pediatric obesity including ARID5B, GPR39, PTPRN2, and HNF4G. We found previously reported candidate loci for obesity, and new ones, suggesting CNV analysis may assist in the diagnosis of pediatric obesity.
Assuntos
Variações do Número de Cópias de DNA , Loci Gênicos , Obesidade/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Adolescente , Pré-Escolar , Proteínas de Ligação a DNA/genética , Feminino , Estudo de Associação Genômica Ampla , Fator 4 Nuclear de Hepatócito/genética , Humanos , Masculino , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores/genética , Receptores Acoplados a Proteínas G/genética , Secretagoginas/genética , Fatores de Transcrição/genéticaRESUMO
OBJECTIVE: Chromosome 22q11.2 deletion syndrome (22q11.2DS) is associated with a more than 20-fold increased risk for developing schizophrenia. The aim of this study was to identify additional genetic factors (i.e., "second hits") that may contribute to schizophrenia expression. METHOD: Through an international consortium, the authors obtained DNA samples from 329 psychiatrically phenotyped subjects with 22q11.2DS. Using a high-resolution microarray platform and established methods to assess copy number variation (CNV), the authors compared the genome-wide burden of rare autosomal CNV, outside of the 22q11.2 deletion region, between two groups: a schizophrenia group and those with no psychotic disorder at age ≥25 years. The authors assessed whether genes overlapped by rare CNVs were overrepresented in functional pathways relevant to schizophrenia. RESULTS: Rare CNVs overlapping one or more protein-coding genes revealed significant between-group differences. For rare exonic duplications, six of 19 gene sets tested were enriched in the schizophrenia group; genes associated with abnormal nervous system phenotypes remained significant in a stepwise logistic regression model and showed significant interactions with 22q11.2 deletion region genes in a connectivity analysis. For rare exonic deletions, the schizophrenia group had, on average, more genes overlapped. The additional rare CNVs implicated known (e.g., GRM7, 15q13.3, 16p12.2) and novel schizophrenia risk genes and loci. CONCLUSIONS: The results suggest that additional rare CNVs overlapping genes outside of the 22q11.2 deletion region contribute to schizophrenia risk in 22q11.2DS, supporting a multigenic hypothesis for schizophrenia. The findings have implications for understanding expression of psychotic illness and herald the importance of whole-genome sequencing to appreciate the overall genomic architecture of schizophrenia.
Assuntos
Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Transtornos Cromossômicos/genética , Síndrome de DiGeorge/genética , Deficiência Intelectual/genética , Esquizofrenia/genética , Adulto , Transtorno do Espectro Autista/psicologia , Transtorno Autístico/psicologia , Deleção Cromossômica , Transtornos Cromossômicos/psicologia , Cromossomos Humanos Par 16/genética , Variações do Número de Cópias de DNA , Síndrome de DiGeorge/psicologia , Feminino , Humanos , Deficiência Intelectual/psicologia , Masculino , Pessoa de Meia-IdadeRESUMO
BACKGROUND: Obsessive-compulsive disorder (OCD) is a heterogeneous neuropsychiatric condition, thought to have a significant genetic component. When onset occurs in childhood, affected individuals generally exhibit different characteristics from adult-onset OCD, including higher prevalence in males and increased heritability. Since neuropsychiatric conditions are associated with copy number variations (CNVs), we considered their potential role in the etiology of OCD. METHODS: We genotyped 307 unrelated pediatric probands with idiopathic OCD (including 174 that were part of complete parent-child trios) and compared their genotypes with those of 3861 population controls, to identify rare CNVs (<0.5 % frequency) of at least 15 kb in size that might contribute to OCD. RESULTS: We uncovered de novo CNVs in 4/174 probands (2.3 %). Our case cohort was enriched for CNVs in genes that encode targets of the fragile X mental retardation protein (nominal p = 1.85 × 10-03; FDR=0.09), similar to previous findings in autism and schizophrenia. These results also identified deletions or duplications of exons in genes involved in neuronal migration (ASTN2), synapse formation (NLGN1 and PTPRD), and postsynaptic scaffolding (DLGAP1 and DLGAP2), which may be relevant to the pathogenesis of OCD. Four cases had CNVs involving known genomic disorder loci (1q21.1-21.2, 15q11.2-q13.1, 16p13.11, and 17p12). Further, we identified BTBD9 as a candidate gene for OCD. We also sequenced exomes of ten "CNV positive" trios and identified in one an additional plausibly relevant mutation: a 13 bp exonic deletion in DRD4. CONCLUSIONS: Our findings suggest that rare CNVs may contribute to the etiology of OCD.
RESUMO
A challenge in clinical genomics is to predict whether copy number variation (CNV) affecting a gene or multiple genes will manifest as disease. Increasing recognition of gene dosage effects in neurodevelopmental disorders prompted us to develop a computational approach based on critical-exon (highly expressed in brain, highly conserved) examination for potential etiologic effects. Using a large CNV dataset, our updated analyses revealed significant (P < 1.64 × 10(-15)) enrichment of critical-exons within rare CNVs in cases compared to controls. Separately, we used a weighted gene co-expression network analysis (WGCNA) to construct an unbiased protein module from prenatal and adult tissues and found it significantly enriched for critical exons in prenatal (P < 1.15 × 10(-50), OR = 2.11) and adult (P < 6.03 × 10(-18), OR = 1.55) tissues. WGCNA yielded 1,206 proteins for which we prioritized the corresponding genes as likely to have a role in neurodevelopmental disorders. We compared the gene lists obtained from critical-exon and WGCNA analysis and found 438 candidate genes associated with CNVs annotated as pathogenic, or as variants of uncertain significance (VOUS), from among 10,619 developmental delay cases. We identified genes containing CNVs previously considered to be VOUS to be new candidate genes for neurodevelopmental disorders (GIT1, MVB12B and PPP1R9A) demonstrating the utility of this strategy to index the clinical effects of CNVs.
Assuntos
Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Criança , Deficiências do Desenvolvimento/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Proteômica/métodosRESUMO
Chromosome 22q11.2 microdeletions impart a high but incomplete risk for schizophrenia. Possible mechanisms include genome-wide effects of DGCR8 haploinsufficiency. In a proof-of-principle study to assess the power of this model, we used high-quality, whole-genome sequencing of nine individuals with 22q11.2 deletions and extreme phenotypes (schizophrenia, or no psychotic disorder at age >50 years). The schizophrenia group had a greater burden of rare, damaging variants impacting protein-coding neurofunctional genes, including genes involved in neuron projection (nominal P = 0.02, joint burden of three variant types). Variants in the intact 22q11.2 region were not major contributors. Restricting to genes affected by a DGCR8 mechanism tended to amplify between-group differences. Damaging variants in highly conserved long intergenic noncoding RNA genes also were enriched in the schizophrenia group (nominal P = 0.04). The findings support the 22q11.2 deletion model as a threshold-lowering first hit for schizophrenia risk. If applied to a larger and thus better-powered cohort, this appears to be a promising approach to identify genome-wide rare variants in coding and noncoding sequence that perturb gene networks relevant to idiopathic schizophrenia. Similarly designed studies exploiting genetic models may prove useful to help delineate the genetic architecture of other complex phenotypes.
Assuntos
Síndrome de DiGeorge/complicações , Genoma Humano , Esquizofrenia/genética , Adolescente , Adulto , Estudos de Casos e Controles , Síndrome de DiGeorge/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Esquizofrenia/epidemiologiaRESUMO
Cerebral palsy (CP) represents a group of non-progressive clinically heterogeneous disorders that are characterized by motor impairment and early age of onset, frequently accompanied by co-morbidities. The cause of CP has historically been attributed to environmental stressors resulting in brain damage. While genetic risk factors are also implicated, guidelines for diagnostic assessment of CP do not recommend for routine genetic testing. Given numerous reports of aetiologic copy number variations (CNVs) in other neurodevelopmental disorders, we used microarrays to genotype a population-based prospective cohort of children with CP and their parents. Here we identify de novo CNVs in 8/115 (7.0%) CP patients (â¼1% rate in controls). In four children, large chromosomal abnormalities deemed likely pathogenic were found, and they were significantly more likely to have severe neuromotor impairments than those CP subjects without such alterations. Overall, the CNV data would have impacted our diagnosis or classification of CP in 11/115 (9.6%) families.
Assuntos
Paralisia Cerebral/genética , Aberrações Cromossômicas , Cromossomos Humanos/genética , Variações do Número de Cópias de DNA/genética , Pais , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Genótipo , Humanos , Masculino , Estudos ProspectivosRESUMO
Autism spectrum disorder (ASD) is genetically heterogeneous, with evidence for hundreds of susceptibility loci. Previous microarray and exome-sequencing studies have examined portions of the genome in simplex families (parents and one ASD-affected child) having presumed sporadic forms of the disorder. We used whole-genome sequencing (WGS) of 85 quartet families (parents and two ASD-affected siblings), consisting of 170 individuals with ASD, to generate a comprehensive data resource encompassing all classes of genetic variation (including noncoding variants) and accompanying phenotypes, in apparently familial forms of ASD. By examining de novo and rare inherited single-nucleotide and structural variations in genes previously reported to be associated with ASD or other neurodevelopmental disorders, we found that some (69.4%) of the affected siblings carried different ASD-relevant mutations. These siblings with discordant mutations tended to demonstrate more clinical variability than those who shared a risk variant. Our study emphasizes that substantial genetic heterogeneity exists in ASD, necessitating the use of WGS to delineate all genic and non-genic susceptibility variants in research and in clinical diagnostics.
Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Pais , Análise de Sequência de DNA , Irmãos , Adulto , Criança , Feminino , Predisposição Genética para Doença , Humanos , MasculinoRESUMO
BACKGROUND: Autism spectrum disorders (ASDs) are a group of neurodevelopmental conditions with a demonstrated genetic etiology. Rare (<1% frequency) copy number variations (CNVs) account for a proportion of the genetic events involved, but the contribution of these events in non-European ASD populations has not been well studied. Here, we report on rare CNVs detected in a cohort of individuals with ASD of Han Chinese background. METHODS: DNA samples were obtained from 104 ASD probands and their parents who were recruited from Harbin, China. Samples were genotyped on the Affymetrix CytoScan HD platform. Rare CNVs were identified by comparing data with 873 technology-matched controls from Ontario and 1,235 additional population controls of Han Chinese ethnicity. RESULTS: Of the probands, 8.6% had at least 1 de novo CNV (overlapping the GIGYF2, SPRY1, 16p13.3, 16p11.2, 17p13.3-17p13.2, DMD, and NAP1L6 genes/loci). Rare inherited CNVs affected other plausible neurodevelopmental candidate genes including GRID2, LINGO2, and SLC39A12. A 24-kb duplication was also identified at YWHAE, a gene previously implicated in ASD and other developmental disorders. This duplication is observed at a similar frequency in cases and in population controls and is likely a benign Asian-specific copy number polymorphism. CONCLUSIONS: Our findings help define genomic features relevant to ASD in the Han Chinese and emphasize the importance of using ancestry-matched controls in medical genetic interpretations.