Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nano Lett ; 19(10): 6781-6787, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31490694

RESUMO

Accurate, precise, and rapid particle tracking in three dimensions remains a challenge; yet, its achievement will significantly enhance our understanding of living systems. We developed a multifocal microscopy (MFM) that allows snapshot acquisition of the imaging data, and an associated image processing approach, that together allow simultaneous 3D tracking of many fluorescent particles with nanoscale resolution. The 3D tracking was validated by measuring a known trajectory of a fluorescent bead with an axial accuracy of 19 nm through an image depth (axial range) of 3 µm and 4 nm precision of axial localization through an image depth of 4 µm. A second test obtained a uniform axial probability distribution and Brownian dynamics of beads diffusing in solution. We also validated the MFM approach by imaging fluorescent beads immobilized in gels and comparing the 3D localizations to their "ground truth" positions obtained from a confocal microscopy z-stack of finely spaced images. Finally, we applied our MFM and image processing approach to obtain 3D trajectories of insulin granules in pseudoislets of MIN6 cells to demonstrate its compatibility with complex biological systems. Our study demonstrates that multifocal microscopy allows rapid (video rate) and simultaneous 3D tracking of many "particles" with nanoscale accuracy and precision in a wide range of systems, including over spatial scales relevant to whole live cells.

2.
Opt Express ; 26(21): 27381-27402, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30469808

RESUMO

Realizing both high temporal and spatial resolution across a large volume is a key challenge for 3D fluorescent imaging. Towards achieving this objective, we introduce an interferometric multifocus microscopy (iMFM) system, a combination of multifocus microscopy (MFM) with two opposing objective lenses. We show that the proposed iMFM is capable of simultaneously producing multiple focal plane interferometry that provides axial super-resolution and hence isotropic 3D resolution with a single exposure. We design and simulate the iMFM microscope by employing two special diffractive optical elements. The point spread function of this new iMFM microscope is simulated and the image formation model is given. For reconstruction, we use the Richardson-Lucy deconvolution algorithm with total variation regularization for 3D extended object recovery, and a maximum likelihood estimator (MLE) for single molecule tracking. A method for determining an initial axial position of the molecule is also proposed to improve the convergence of the MLE. We demonstrate both theoretically and numerically that isotropic 3D nanoscopic localization accuracy is achievable with an axial imaging range of 2um when tracking a fluorescent molecule in three dimensions and that the diffraction limited axial resolution can be improved by 3-4 times in the single shot wide-field 3D extended object recovery. We believe that iMFM will be a useful tool in 3D dynamic event imaging that requires both high temporal and spatial resolution.

3.
Opt Lett ; 43(12): 2819-2822, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29905697

RESUMO

Accurate and rapid particle tracking is essential for addressing many research problems in single molecule and cellular biophysics and colloidal soft condensed matter physics. We developed a novel three-dimensional interferometric fluorescent particle tracking approach that does not require any sample scanning. By periodically shifting the interferometer phase, the information stored in the interference pattern of the emitted light allows localizing particles positions with nanometer resolution. This tracking protocol was demonstrated by measuring a known trajectory of a fluorescent bead with sub-5 nm axial localization error at 5 Hz. The interferometric microscopy was used to track the RecA protein in Bacillus subtilis bacteria to demonstrate its compatibility with biological systems.

4.
Chemistry ; 24(46): 12084-12092, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30048017

RESUMO

By comparing two-dimensional electronic spectroscopy (2DES) and Pump-Probe (PP) measurements on xanthorhodopsin (XR) and reduced-xanthorhodopsin (RXR) complexes, the ultrafast carotenoid-to-retinal energy transfer pathway is revealed, at very early times, by an excess of signal amplitude at the associated cross-peak and by the carotenoid bleaching reduction due to its ground state recovery. The combination of the measured 2DES and PP spectroscopic data with theoretical modelling allows a clear identification of the main experimental signals and a comprehensive interpretation of their origin and dynamics. The remarkable velocity of the energy transfer, despite the non-negligible energy separation between the two chromophores, and the analysis of the underlying transport mechanism, highlight the role played by the ground state carotenoid vibrations in assisting the process.

5.
J Phys Chem A ; 120(19): 3088-97, 2016 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-26720008

RESUMO

The effect of Cu impurities on the absorption cross section, the rate of hot exction thermalization, and on exciton recombination processes in InAs quantum dots was studied by femtosecond transient absorption. Our findings reveal dynamic spectral effects of an emergent impurity sub-band near the bottom of the conduction band. Previously hypothesized to explain static photophysical properties of this system, its presence is shown to shorten hot carrier relaxation. Partial redistribution of interband oscillator strength to sub-band levels reduces the band edge bleach per exciton progressively with the degree of doping, even though the total linear absorption cross section at the band edge remains unchanged. In contrast, no doping effects were detected on absorption cross sections high in the conduction band, as expected due to the relatively high density of sates of the undoped QDs.

6.
Annu Rev Phys Chem ; 64: 437-58, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23331307

RESUMO

The ultrafast spectroscopic investigation of novel retinal proteins challenges existing notions concerning the course of primary events in these natural photoreceptors. We review two illustrations here. The first demonstrates that changes in the initial retinal configuration can alter the duration of photochemistry by nearly an order of magnitude in Anabaena sensory rhodopsin, making it as rapid as the ballistic photoisomerization in visual pigments. This prompted a reinvestigation of the much studied bacteriorhodopsin, leading to a similar trend as well, contrary to earlier reports. The second involves the study of xanthorhodopsin, an archaeal proton pump that includes an attached light-harvesting carotenoid. Pump-probe experiments demonstrate the efficient transfer of energy from carotenoid to retinal, providing a first glimpse at a cooperative multichromophore function, which is probably characteristic of many other proteins as well. Finally, we discuss measures required to advance our knowledge from kinetics to mode-specific dynamics concerning this expanding family of biological photoreceptors.


Assuntos
Archaea/química , Proteínas Arqueais/química , Bactérias/química , Proteínas de Bactérias/química , Retinaldeído/química , Rodopsinas Microbianas/química , Anabaena/química , Modelos Moleculares , Fotoquímica , Conformação Proteica
7.
Phys Chem Chem Phys ; 13(9): 3782-7, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21183996

RESUMO

Excited state dynamics of native Xanthorhodopsin (XR), of an XR sample with a reduced prosthetic group, and of the associated Carotenoid (CAR) salinixanthin (SX) in ethanol were investigated by hyperspectral Near Infrared (NIR) probing. Global kinetic analysis shows that: (1) unlike the transient spectra recorded in the visible, fitting of the NIR data requires only two phases of exponential spectral evolution, assigned to internal conversion from S(2) → S(1) and from S(1) → S(0) of the carotene. (2) The rate of the internal conversion from S(2) → S(1) in the reduced sample is well fit with a decay time of 130 fs, significantly longer than in XR and in SX, both of which are well fit with τ ≈ 100 fs. This increased lifetime is consistent with a ∼30% efficiency of ET from SX to retinal in XR. (3) S(1) of salinixanthin is verified to lie ∼12,700 cm(-1) above the ground electronic surface, excluding its involvement in the retinal sensitization in XR. (4) The oscillator strength of the S(1) → S(2) transition is determined to be no more than 0.16, despite its symmetry allowedness. (5) No long lived NIR absorbance decay assignable to the carotenoid S* state was detected in any of the samples. Inconsistencies concerning previously determined S(2) lifetimes and kinetic schemes used to model these data are discussed.


Assuntos
Proteínas de Bactérias/química , Carotenoides/química , Glicosídeos/química , Rodopsinas Microbianas/química , Dicroísmo Circular , Etanol/química , Cinética , Espectroscopia de Luz Próxima ao Infravermelho
8.
Biomed Opt Express ; 9(12): 6477-6496, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31065444

RESUMO

Despite recent advances, high performance single-shot 3D microscopy remains an elusive task. By introducing designed diffractive optical elements (DOEs), one is capable of converting a microscope into a 3D "kaleidoscope," in which case the snapshot image consists of an array of tiles and each tile focuses on different depths. However, the acquired multifocal microscopic (MFM) image suffers from multiple sources of degradation, which prevents MFM from further applications. We propose a unifying computational framework which simplifies the imaging system and achieves 3D reconstruction via computation. Our optical configuration omits optical elements for correcting chromatic aberrations and redesigns the multifocal grating to enlarge the tracking area. Our proposed setup features only one single grating in addition to a regular microscope. The aberration correction, along with Poisson and background denoising, are incorporated in our deconvolution-based fully-automated algorithm, which requires no empirical parameter-tuning. In experiments, we achieve spatial resolutions of 0.35um (lateral) and 0.5um (axial), which are comparable to the resolution that can be achieved with confocal deconvolution microscopy. We demonstrate a 3D video of moving bacteria recorded at 25 frames per second using our proposed computational multifocal microscopy technique.

9.
J Phys Chem Lett ; 8(8): 1920-1924, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28388046

RESUMO

Impulsive Raman excitation in neat organic liquids far from resonance is followed using chirped broad-band supercontinuum probe pulses. Spectral modulations due to impulsively induced coherent vibrations vary in intensity 10-fold as a function of the probe's linear chirp. Simulations clarify why the vibrational signature is maximized for a group delay dispersion (GDD) in reduced units of νvib-2 = 0.5 while a probe GDD of twice that quenches the same spectral modulations. Accordingly, recent claims that chirped white-light probe pulses provide equivalent information on material response to their compressed analogues must be taken with caution. In particular, interactions that induce spectral shifts in the probe depend crucially on the arrival chronology of the continuum colors. On one hand, this presents limitations to application of chirped continuum radiation as-is in pump-probe experiments. It also presents the opportunity for using this dependence to control the relative amplitude of nonresonant interactions in pump-probe signals such as that of solvent vibrations.

10.
J Phys Chem B ; 121(10): 2319-2325, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28230358

RESUMO

Ultrafast photochemistry of pharaonis halorhodopsin (p-HR) in the intact membrane of Natronomonas pharaonis has been studied by photoselective femtosecond pump-hyperspectral probe spectroscopy with high time resolution. Two variants of this sample were studied, one with wild-type retinal prosthetic groups and another after shifting the retinal absorption deep into the blue range by reducing the Schiff base linkage, and the results were compared to a previous study on detergent-solubilized p-HR. This comparison shows that retinal photoisomerization dynamics is identical in the membrane and in the solubilized sample. Selective photoexcitation of bacterioruberin, which is associated with the protein in the native membrane, in wild-type and reduced samples, demonstrates conclusively that unlike the carotenoids associated with some bacterial retinal proteins the carrotenoid in p-HR does not act as a light-harvesting antenna.


Assuntos
Carotenoides/efeitos da radiação , Halorrodopsinas/efeitos da radiação , Carotenoides/química , Membrana Celular/química , Halobacteriaceae , Halorrodopsinas/química , Luz , Fotoquímica , Retinaldeído/química , Retinaldeído/efeitos da radiação
11.
J Phys Chem Lett ; 8(5): 1014-1018, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28195481

RESUMO

The design of new complex structures containing semiconductor quantum dots offers a means to create a variety of new meso-solids and molecules. The control of the coupling properties between the dots, accompanied by the energetic tunability of the dots themselves, paves the way toward the application and use of novel quantum properties. Here we present our approach to alteration of interdot coupling using organic linking molecules in a system of covalently bonded, aggregated quantum dots. We used ultrafast transient absorption measurements to identify marks of exciton delocalization over nearest neighbors to some extent. In linking molecules incorporating a benzene ring, the delocalized electron cloud displayed a profound influence over the interdot effects, leading the way to easy coupling control in quantum-based devices, under ambient conditions.

12.
J Phys Chem B ; 119(6): 2345-9, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25144664

RESUMO

The retinal proton pump xanthorhodopsin (XR) was recently found to function with an attached carotenoid light harvesting antenna, salinixanthin (SX). It is intriguing to discover if this departure from single chromophore architecture is singular or if it has been adopted by other microbial rhodopsins. In search of other cases, retinal protein encoding genes in numerous bacteria have been identified containing sequences corresponding to carotenoid binding sites like that in XR. Gloeobacter rhodopsin (GR), exhibiting particularly close homology to XR, has been shown to attach SX, and fluorescence measurements suggest SX can function as a light harvesting (LH) antenna in GR as well. In this study, we test this suggestion in real time using ultrafast transient absorption. Results show that energy transfer indeed occurs from S2 of SX to retinal in the GR-SX composite with an efficiency of ∼40%, even higher than that in XR. This validates the earlier fluorescence study, and supports the notion that many microbial retinal proteins use carotenoid antennae to harvest light.


Assuntos
Carotenoides/química , Cianobactérias , Transferência de Energia , Glicosídeos/química , Retinaldeído/química , Rodopsinas Microbianas/química , Carotenoides/metabolismo , Glicosídeos/metabolismo , Cinética , Retinaldeído/metabolismo , Rodopsinas Microbianas/metabolismo
13.
ACS Nano ; 9(2): 2138-47, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25629237

RESUMO

Above band-edge photoexcitation of PbSe nanocrystals induces strong below band gap absorption as well as a multiphased buildup of bleaching in the 1Se1Sh transition. The amplitudes and kinetics of these features deviate from expectations based on biexciton shifts and state filling, which are the mechanisms usually evoked to explain them. To clarify these discrepancies, the same transitions are investigated here by double-pump-probe spectroscopy. Re-exciting in the below band gap induced absorption characteristic of hot excitons is shown to produce additional excitons with high probability. In addition, pump-probe experiments on a sample saturated with single relaxed excitons prove that the resulting 1Se1Sh bleach is not linear with the number of excitons per nanocrystal. This finding holds for two samples differing significantly in size, demonstrating its generality. Analysis of the results suggests that below band edge induced absorption in hot exciton states is due to excited-state absorption and not to shifted absorption of cold carriers and that 1Se1Sh bleach signals are not an accurate counter of sample excitons when their distribution includes multiexciton states.

14.
ACS Nano ; 6(4): 3269-77, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22390473

RESUMO

Hyperspectral femtosecond transient absorption spectroscopy is employed to record exciton relaxation and recombination in colloidal lead selenide (PbSe) nanocrystals in unprecedented detail. Results obtained with different pump wavelengths and fluences are scrutinized with regard to three issues: (1) early subpicosecond spectral features due to "hot" excitons are analyzed in terms of suggested underlying mechanisms; (2) global kinetic analysis facilitates separation of the transient difference spectra into single, double, and triple exciton state contributions, from which individual band assignments can be tested; and (3) the transient spectra are screened for signatures of multiexciton generation (MEG) by comparing experiments with excitation pulses both below and well above the theoretical threshold for multiplication. For the latter, a recently devised ultrafast pump-probe spectroscopic approach is employed. Scaling sample concentrations and pump pulse intensities inversely with the extinction coefficient at each excitation wavelength overcomes ambiguities due to direct multiphoton excitation, uncertainties of absolute absorption cross sections, and low signal levels. As observed in a recent application of this method to InAs core/shell/shell nanodots, no sign of MEG was detected in this sample up to photon energy 3.7 times the band gap. Accordingly, numerous reports of efficient MEG in other samples of PbSe suggest that the efficiency of this process varies from sample to sample and depends on factors yet to be determined.

15.
J Phys Chem B ; 114(8): 3038-45, 2010 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-20146526

RESUMO

Excited-state dynamics of xanthorhodopsin (XR) and of salinixanthin (SX) in ethanol were investigated by ultrafast pump-hyperspectral probe spectroscopy. Following excitation to the strongly allowed S(2) state of the SX chromophore, transient spectra were recorded photoselectively in the range 430-850 nm. Global kinetic analysis of these data shows the following. (1) Efficient energy transfer from S(2) of the SX in XR to its retinal moiety is verified here. The lifetime of S(2) in SX is, however, determined to be approximately 20 fs, much shorter than previously reported. (2) Branching ratios of excitation transfer from S(2) to S(1), to S*, and to retinal in XR are measured leading to species associated difference spectra (SADS) for all the states involved. Strong protein effects are detected on these branching probabilities. (3) S(1) and S* absorption bands in both systems exhibit anisotropy well below the expected r = 0.4, indicating an angle of approximately 25 degrees between the S(0) --> S(2) and S(1) --> S(n)/S* --> S(n) transition dipoles. The latter allows confident assignment of the debated S* absorption band to an excited state of SX, and not to "hot" S(0). In light of the extremely fast IC from S(2) to lower excited singlets, possible involvement of ballistic IC in SX, and of coherent energy transfer in XR, are discussed.


Assuntos
Proteínas de Bactérias/química , Carotenoides/química , Glicosídeos/química , Rodopsinas Microbianas/química , Simulação de Dinâmica Molecular , Fotoquímica , Teoria Quântica , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA