Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Arch Biochem Biophys ; 714: 109080, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742934

RESUMO

Alisol B 23-acetate (AB23A) is a natural triterpenoid isolated from Rhizoma alisamatis that has been widely used as a traditional Chinese medicine (TCM). Previous studies have documented the beneficial effect of AB23A on non-alcoholic fatty liver disease (NAFLD), but the functional interactions between gut microbiota and the anti-NAFLD effect of AB23A remain unclear. In this study, we investigated the benefits of experimental treatment with AB23A on gut microbiota dysbiosis in NAFLD with an obesity model. C57BL/6J mice were administrated a high-fat diet (HFD) with or without AB23A for 12 weeks. AB23A significantly improved metabolic phenotype in the HFD-fed mice. Moreover, results of 16S rRNA gene-based amplicon sequencing in each group reveled that AB23A not only reduced the abundance of the Firmicutes/Bacteroidaeota ratio and Actinobacteriota/Bacteroidaeota ratio, but regulated the abundance of the top 10 genera, including norank_f__Muribaculaceae, Lactobacillus, Ileibacterium, Turicibacter, Faecalibaculum, the Lachnospiraceae_NK4A136_group, unclassified_f__Lachnospiraceae, and norank_f__Lachnospiraceae. AB23A significantly reduced the serum levels of lipopolysaccharide and branched-chain amino acids, which are positively correlated with the abundances of Ileibacterium and Turicibacter. Moreover, AB23A led to remarkable reductions in the activation of TLR4, NF-κB, and mTOR, and upregulated the expression of tight junction proteins, including ZO-1 and occludin. These results revealed that AB23A displayed a prebiotic capacity in HFD-fed NAFLD mice.


Assuntos
Aminoácidos de Cadeia Ramificada/sangue , Colestenonas/farmacologia , Dieta Hiperlipídica , Lipopolissacarídeos/sangue , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Probióticos , Animais , Peso Corporal/efeitos dos fármacos , Microbioma Gastrointestinal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/metabolismo , RNA Ribossômico 16S/genética , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/metabolismo , Aumento de Peso/efeitos dos fármacos
2.
Bioorg Med Chem ; 23(22): 7332-9, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26526739

RESUMO

In this study, a series of catechol-based amides (8a-n) with different amide linkers linking the catecholic moiety to the terminal phenyl ring was designed and synthesized as potent phosphodiesterase (PDE) 4D inhibitors. The inhibitory activities of these compounds were evaluated against the core catalytic domains of human PDE4 (PDE4CAT), full-length PDE4B1 and PDE4D7 enzymes, and other PDE family members. The results indicated the majority of compounds 8a-n displayed moderate to good inhibitory activities against PDE4CAT. Among these compounds, compound 8 j with a short amide linker (-CONHCH2-) displayed comparable PDE4CAT inhibitory activity (IC50=410 nM) with rolipram. More interestingly, compound 8 g, a potent and selective PDE4D inhibitor (IC50=94 nM), exhibited a 10-fold selectivity over the PDE4B subtypes and an over 1000-fold selectivity against other PDE family members. Docking simulations suggested that 8 g forms three extra H-bonds with the N-H of residue Asn487 and two water molecules.


Assuntos
Amidas/química , Catecóis/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/química , Desenho de Fármacos , Inibidores de Fosfodiesterase/síntese química , Inibidores de Fosfodiesterase/farmacologia , Amidas/síntese química , Amidas/metabolismo , Sítios de Ligação , Domínio Catalítico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Ativação Enzimática/efeitos dos fármacos , Humanos , Ligação de Hidrogênio , Concentração Inibidora 50 , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Simulação de Acoplamento Molecular , Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/metabolismo , Ligação Proteica/efeitos dos fármacos , Relação Estrutura-Atividade
3.
Biochem Pharmacol ; 218: 115859, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37863326

RESUMO

Cutaneous melanoma is one of the most prevalent tumors, and it is still a huge challenge in the current clinical treatment. Isoliquiritigenin (ISL), which is isolated from Glycyrrhiza uralensis Fisch., has been reported for its anti-tumor effect. However, the underlying mechanism and targets of ISL are still not be revealed clearly. In this study, differentiallyexpressedproteins were identified bylabel-free quantitative mass spectrometry. Two isoforms of the histone variant H2A.Z, including H2A.Z.1 and H2A.Z.2, were significantly down regulated after administration of ISL in melanoma. H2A.Z.1 was highly expressed in melanoma and correlated with poor prognosis of melanoma. The expression of H2A.Z was inhibited by ISL in a concentration-dependent manner. Overexpression of H2A.Z.1 in melanoma cell lines partly restored the repressed cell proliferation and cell cycle by ISL. Moreover, E2F1 was identified as one downstream target of H2A.Z.1, which was also highly expressed in melanoma and correlated with poor prognosis of melanoma. Furthermore, in vivo assays validated the inhibitory role of ISL in melanoma proliferation and the expression of H2A.Z.1 and E2F1.Aboveall,it is indicated that ISL inhibit melanoma proliferation via targeting H2A.Z.1-E2F1 pathway. These findings explain the anti-tumor mechanism of ISL and provide potential therapeutic targets for melanoma.


Assuntos
Chalconas , Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/metabolismo , Histonas , Neoplasias Cutâneas/tratamento farmacológico , Linhagem Celular Tumoral , Chalconas/farmacologia , Chalconas/uso terapêutico , Fator de Transcrição E2F1 , Melanoma Maligno Cutâneo
4.
J Healthc Eng ; 2022: 6567625, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399842

RESUMO

Generally, in medical colleges and universities, discipline is assumed as one the challenging and predominant research domain both for staff and students. Therefore, in this paper, we have aimed to explore the discipline construction and development of medical colleges and universities in a complex environment. First, the contribution model of advantageous discipline construction to improve the core competitiveness of colleges and universities is implemented. Second, the staff involved in discipline construction in medical colleges and universities in Shaanxi Province are investigated. Finally, the structural equation model (SEM) is used to test the hypotheses and verify the basic elements of the construction of the core competitiveness of colleges and universities. The results show that discipline construction in colleges and universities includes the construction of advantageous characteristics, the construction of the academic echelon, the construction of scientific research, the construction of resource conditions, and the construction of talent training. The five elements interact and jointly affect the construction of advantageous disciplines in colleges and universities. And they have different effects on the university's core competitiveness. Among them, the advantage trait construction has an implicit effect on the improvement of efficient management ability, and the influence of resource condition construction is indirect. The study provides a reference for the development of higher education. The successful experience of using discipline construction to improve the core competitiveness from function orientation and degrees and some corresponding suggestions, which were made, are achieved.


Assuntos
Tecnologia Digital , Estudantes , Humanos , Universidades
5.
Front Pharmacol ; 13: 911196, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35774596

RESUMO

Alisol B 23-Acetate (AB23A) is a naturally occurring triterpenoid, which can be indicated in the rhizome of medicinal and dietary plants from Alisma species. Previous studies have demonstrated that AB23A could inhibit intestinal permeability by regulating tight junction (TJ)-related proteins. Even so, the AB23A protective mechanism against intestinal barrier dysfunction remains poorly understood. This investigation seeks to evaluate the AB23A protective effects on intestinal barrier dysfunction and determine the mechanisms for restoring intestinal barrier dysfunction in LPS-stimulated Caco-2 monolayers. According to our findings, AB23A attenuated the inflammation by reducing pro-inflammatory cytokines production like IL-6, TNF-α, IL-1ß, and prevented the paracellular permeability by inhibiting the disruption of TJ in LPS-induced Caco-2 monolayers after treated with LPS. AB23A also inhibited LPS-induced TLR4, NOX1 overexpression and subsequent ROS generation in Caco-2 monolayers. Transfected with NOX1-specific shRNA diminished the up-regulating AB23A effect on ZO-1 and occludin expression. Moreover, transfected with shRNA of TLR4 not only enhanced ZO-1 and occludin expression but attenuated NOX1 expression and ROS generation. Therefore, AB23A ameliorates LPS-induced intestinal barrier dysfunction by inhibiting TLR4-NOX1/ROS signaling pathway in Caco-2 monolayers, suggesting that AB23A may have positive impact on maintaining the intestinal barrier's integrity.

6.
World J Diabetes ; 12(8): 1146-1163, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34512884

RESUMO

Type 2 diabetes mellitus (T2DM) is among the most remarkable public health concerns globally. Accumulating research evidence documents that alteration of gut microbiota has an indispensable role in the onset and progression of obesity and T2DM. A reduced microbial diversity is linked to insulin resistance and energy metabolism, especially for the rise of the Firmicutes/Bacteroidetes ratio. Changes in metabolites followed by the gut dysbacteriosis are linked to the presence of T2DM. Moreover, endotoxin leakage and gut permeability caused by gut dysbacteriosis is more of a trigger for the onset and progression of T2DM. Research documents that natural products are remarkable arsenals of bioactive agents for the discovery of anti-T2DM drugs. Many studies have elucidated that the possible mechanisms of the anti-T2DM effects of natural products are remarkably linked to its regulation on the composition of gut microflora and the successive changes in metabolites directly or indirectly. This review presents a brief overview of the gut microbiota in T2DM and several relevant mechanisms, including short-chain fatty acids, biosynthesis and metabolism of branched-chain fatty acids, trimethylamine N-oxide, bile acid signaling, endotoxin leakage, and gut permeability, and describes how dietary natural products can improve T2DM via the gut microbiota.

7.
ACS Chem Neurosci ; 8(1): 135-146, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-27690383

RESUMO

Depression involving neuroinflammation is one of the most common disabling and life-threatening psychiatric disorders. Phosphodiesterase 4 (PDE4) inhibitors produce potent antidepressant-like and cognition-enhancing effects. However, their clinical utility is limited by their major side effect of emesis. To obtain more selective PDE4 inhibitors with antidepressant and anti-neuroinflammation potential and less emesis, we designed and synthesized a series of N-alkyl catecholamides by modifying the 4-methoxybenzyl group of our hit compound, FCPE07, with an alkyl side chain. Among these compounds, 10 compounds displayed submicromolar IC50 values in the mid- to low-nanomolar range. Moreover, 4-difluoromethoxybenzamides 10g and 10j, bearing isopropyl groups, exhibited the highest PDE4 inhibitory activities, with IC50 values in the low-nanomolar range and with higher selectivities for PDE4 (approximately 5000-fold and 2100-fold over other PDEs, respectively). Furthermore, compound 10j displayed anti-neuroinflammation potential, promising antidepressant-like effects, and a zero incidence rate of emesis at 0.8 mg/kg within 180 min.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Encefalite/tratamento farmacológico , Inibidores da Fosfodiesterase 4/química , Inibidores da Fosfodiesterase 4/uso terapêutico , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacocinética , Antidepressivos/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Cães , Relação Dose-Resposta a Droga , Encefalite/induzido quimicamente , Comportamento Exploratório/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Elevação dos Membros Posteriores/métodos , Elevação dos Membros Posteriores/psicologia , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Óxido Nítrico Sintase Tipo II/metabolismo , Rolipram/farmacologia , Rolipram/uso terapêutico , Natação/psicologia , Fator de Necrose Tumoral alfa/metabolismo , Vômito/tratamento farmacológico , Vômito/veterinária
8.
Eur J Med Chem ; 141: 440-445, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040954

RESUMO

A series of aminopyridazin-3(2H)-one derivatives has been designed and synthesized. Their antiproliferative activities were evaluated against three human cancer cell lines (SH-SY5Y human neuroblastoma, K562 human myelogenous leukemia and AGS gastric cancer cell lines) using the MTT assay. The preliminary activity test displayed that compound 8a exhibited comparable activities against all test cells with the positive control fluorouracil. Meanwhile compounds 8b, 8e and 9c-e displayed selective antiproliferative activities for SH-SY5Y cells. Furthermore, compounds 8a-b with low-micromole GI50 value for SH-SY5Y cells induced apoptosis with cell cycle arrest at G0/G1 phase in SH-SY5Y cells in a dose-dependent manner.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Desenho de Fármacos , Piridinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Fase G1/efeitos dos fármacos , Humanos , Estrutura Molecular , Piridinas/síntese química , Piridinas/química , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Relação Estrutura-Atividade
9.
Eur J Med Chem ; 124: 372-379, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27597413

RESUMO

In this study, catecholamides (7a-l) bearing different aromatic rings (such as pyridine-2-yl, pyridine-3-yl, phenyl, and 2-chlorophenyl groups) were synthesized as potent phosphodiesterase (PDE) 4 inhibitors. The inhibitory activities of these compounds were evaluated against the core catalytic domains of human PDE4 (PDE4CAT), full-length PDE4A4, PDE4B1, PDE4C1, and PDE4D7 enzymes, and other PDE family members. Eight of the synthesized compounds were identified as having submicromolar IC50 values in the mid-to low-nanomolar range. Careful analysis on the structure-activity relationship of compounds 7a-l revealed that the replacement of the 4-methoxy group with the difluoromethoxy group improved inhibitory activities. More interesting, 4-difluoromethoxybenzamides 7i and 7j exhibited preference for PDE4 with higher selectivities of about 3333 and 1111-fold over other PDEs, respectively. In addition, compound 7j with wonderful PDE4D7 inhibitory activities inhibited LPS-induced TNF-α production in microglia.


Assuntos
Catecóis/síntese química , Catecóis/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Desenho de Fármacos , Microglia/efeitos dos fármacos , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Catecóis/química , Catecóis/metabolismo , Linhagem Celular , Técnicas de Química Sintética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/química , Humanos , Simulação de Acoplamento Molecular , Inibidores da Fosfodiesterase 4/síntese química , Inibidores da Fosfodiesterase 4/química , Inibidores da Fosfodiesterase 4/metabolismo , Inibidores da Fosfodiesterase 4/farmacologia , Conformação Proteica , Relação Estrutura-Atividade
10.
Eur J Med Chem ; 90: 251-7, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25461325

RESUMO

This paper describes the synthesis and the antiproliferative activities of compounds 9a-r, 3-aryl analogs of flavone-8-acetic acid that bear diverse substituents on the benzene rings at the 2- and 3-positions of the flavone nucleus. Their direct and indirect cytotoxicities were evaluated against HT-29 human colon adenocarcinoma cell lines, A549 lung adenocarcinoma cell lines and Human Peripheral Blood Mononuclear Cells (HPBMCs). The results indicate that most of the compounds bearing electron-withdrawing substituents (9b-m) exhibited moderate direct cytotoxicities. And compounds 9e and 9i showed comparable indirect cytotoxicities with 5, 6-dimethylxanthenone-4-acetic acid (DMXAA), and low direct cytotoxicities toward HPBMCs. Interestingly, the compounds 9n-r bearing methoxy groups at the 2- or 3-position of the flavone nucleus exhibited higher indirect cytotoxicities against A549 cell lines than DMXAA, and lower cytotoxicities against HPBMCs. In addition, compounds 9p-r were found to be able to induce tumor necrosis factor α (TNF-α) production in HPBMCs.


Assuntos
Antineoplásicos/farmacologia , Flavonas/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Flavonas/síntese química , Flavonas/química , Células HT29 , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA