Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(17)2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34502280

RESUMO

Estrogen receptor alpha (ERα) is a ligand-dependent transcriptional factor in the nuclear receptor superfamily. Many structures of ERα bound with agonists and antagonists have been determined. However, the dynamic binding patterns of agonists and antagonists in the binding site of ERα remains unclear. Therefore, we performed molecular docking, molecular dynamics (MD) simulations, and quantum mechanical calculations to elucidate agonist and antagonist dynamic binding patterns in ERα. 17ß-estradiol (E2) and 4-hydroxytamoxifen (OHT) were docked in the ligand binding pockets of the agonist and antagonist bound ERα. The best complex conformations from molecular docking were subjected to 100 nanosecond MD simulations. Hierarchical clustering was conducted to group the structures in the trajectory from MD simulations. The representative structure from each cluster was selected to calculate the binding interaction energy value for elucidation of the dynamic binding patterns of agonists and antagonists in the binding site of ERα. The binding interaction energy analysis revealed that OHT binds ERα more tightly in the antagonist conformer, while E2 prefers the agonist conformer. The results may help identify ERα antagonists as drug candidates and facilitate risk assessment of chemicals through ER-mediated responses.


Assuntos
Estradiol/metabolismo , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/metabolismo , Tamoxifeno/análogos & derivados , Estradiol/química , Receptor alfa de Estrogênio/química , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Teoria Quântica , Tamoxifeno/química , Tamoxifeno/metabolismo
2.
Molecules ; 26(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525602

RESUMO

Persistent Organic Pollutants (POPs) are a serious food safety concern due to their persistence and toxic effects. To promote food safety and protect human health, it is important to understand the sources of POPs and how to minimize human exposure to these contaminants. The POPs Program within the U.S. Food and Drug Administration (FDA), manually evaluates congener patterns of POPs-contaminated samples and sometimes compares the finding to other previously analyzed samples with similar patterns. This manual comparison is time consuming and solely depends on human expertise. To improve the efficiency of this evaluation, we developed software to assist in identifying potential sources of POPs contamination by detecting similarities between the congener patterns of a contaminated sample and potential environmental source samples. Similarity scores were computed and used to rank potential source samples. The software has been tested on a diverse set of incurred samples by comparing results from the software with those from human experts. We demonstrated that the software provides results consistent with human expert observation. This software also provided the advantage of reliably evaluating an increased sample lot which increased overall efficiency.


Assuntos
Ração Animal/análise , Monitoramento Ambiental/métodos , Poluentes Ambientais/química , Inocuidade dos Alimentos/métodos , Poluentes Orgânicos Persistentes/química , Animais , Humanos , Software
3.
BMC Bioinformatics ; 20(Suppl 2): 97, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30871458

RESUMO

BACKGROUND: Adverse Drug Reactions (ADRs) are of great public health concern. FDA-approved drug labeling summarizes ADRs of a drug product mainly in three sections, i.e., Boxed Warning (BW), Warnings and Precautions (WP), and Adverse Reactions (AR), where the severity of ADRs are intended to decrease in the order of BW > WP > AR. Several reported studies have extracted ADRs from labeling documents, but most, if not all, did not discriminate the severity of the ADRs by the different labeling sections. Such a practice could overstate or underestimate the impact of certain ADRs to the public health. In this study, we applied the Medical Dictionary for Regulatory Activities (MedDRA) to drug labeling and systematically analyzed and compared the ADRs from the three labeling sections with a specific emphasis on analyzing serious ADRs presented in BW, which is of most drug safety concern. RESULTS: This study investigated New Drug Application (NDA) labeling documents for 1164 single-ingredient drugs using Oracle Text search to extract MedDRA terms. We found that only a small portion of MedDRA Preferred Terms (PTs), 3819 out of 21,920 or 17.42%, were observed in a whole set of documents. In detail, 466/3819 (12.0%) PTs were in BW, 2023/3819 (53.0%) were in WP, and 2961/3819 (77.5%) were in AR sections. We also found a higher overlap of top 20 occurring BW PTs with WP sections compared to AR sections. Within the MedDRA System Organ Class levels, serious ADRs (sADRs) from BW were prevalent in Nervous System disorders and Vascular disorders. A Hierarchical Cluster Analysis (HCA) revealed that drugs within the same therapeutic category shared the same ADR patterns in BW (e.g., nervous system drug class is highly associated with drug abuse terms such as dependence, substance abuse, and respiratory depression). CONCLUSIONS: This study demonstrated that combining MedDRA standard terminologies with data mining techniques facilitated computer-aided ADR analysis of drug labeling. We also highlighted the importance of labeling sections that differ in seriousness and application in drug safety. Using sADRs primarily related to BW sections, we illustrated a prototype approach for computer-aided ADR monitoring and studies which can be applied to other public health documents.


Assuntos
Sistemas de Notificação de Reações Adversas a Medicamentos/normas , Mineração de Dados/métodos , Rotulagem de Medicamentos/instrumentação , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/diagnóstico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Humanos
4.
BMC Bioinformatics ; 20(Suppl 2): 101, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30871461

RESUMO

BACKGROUND: Reference genome selection is a prerequisite for successful analysis of next generation sequencing (NGS) data. Current practice employs one of the two most recent human reference genome versions: HG19 or HG38. To date, the impact of genome version on SNV identification has not been rigorously assessed. METHODS: We conducted analysis comparing the SNVs identified based on HG19 vs HG38, leveraging whole genome sequencing (WGS) data from the genome-in-a-bottle (GIAB) project. First, SNVs were called using 26 different bioinformatics pipelines with either HG19 or HG38. Next, two tools were used to convert the called SNVs between HG19 and HG38. Lastly we calculated conversion rates, analyzed discordant rates between SNVs called with HG19 or HG38, and characterized the discordant SNVs. RESULTS: The conversion rates from HG38 to HG19 (average 95%) were lower than the conversion rates from HG19 to HG38 (average 99%). The conversion rates varied slightly among the various calling pipelines. Around 1.5% SNVs were discordantly converted between HG19 or HG38. The conversions from HG38 to HG19 had more SNVs which failed conversion and more discordant SNVs than the opposite conversion (HG19 to HG38). Most of the discordant SNVs had low read depth, were low confidence SNVs as defined by GIAB, and/or were predominated by G/C alleles (52% observed versus 42% expected). CONCLUSION: A significant number of SNVs could not be converted between HG19 and HG38. Based on careful review of our comparisons, we recommend HG38 (the newer version) for NGS SNV analysis. To summarize, our findings suggest caution when translating identified SNVs between different versions of the human reference genome.


Assuntos
Genoma Humano/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos
6.
BMC Bioinformatics ; 16 Suppl 13: S8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26424364

RESUMO

BACKGROUND: Topic modelling is an active research field in machine learning. While mainly used to build models from unstructured textual data, it offers an effective means of data mining where samples represent documents, and different biological endpoints or omics data represent words. Latent Dirichlet Allocation (LDA) is the most commonly used topic modelling method across a wide number of technical fields. However, model development can be arduous and tedious, and requires burdensome and systematic sensitivity studies in order to find the best set of model parameters. Often, time-consuming subjective evaluations are needed to compare models. Currently, research has yielded no easy way to choose the proper number of topics in a model beyond a major iterative approach. METHODS AND RESULTS: Based on analysis of variation of statistical perplexity during topic modelling, a heuristic approach is proposed in this study to estimate the most appropriate number of topics. Specifically, the rate of perplexity change (RPC) as a function of numbers of topics is proposed as a suitable selector. We test the stability and effectiveness of the proposed method for three markedly different types of grounded-truth datasets: Salmonella next generation sequencing, pharmacological side effects, and textual abstracts on computational biology and bioinformatics (TCBB) from PubMed. CONCLUSION: The proposed RPC-based method is demonstrated to choose the best number of topics in three numerical experiments of widely different data types, and for databases of very different sizes. The work required was markedly less arduous than if full systematic sensitivity studies had been carried out with number of topics as a parameter. We understand that additional investigation is needed to substantiate the method's theoretical basis, and to establish its generalizability in terms of dataset characteristics.


Assuntos
Biologia Computacional/métodos , Mineração de Dados/métodos , Heurística/fisiologia , Bases de Dados Factuais , Sequenciamento de Nucleotídeos em Larga Escala
7.
Chem Res Toxicol ; 28(12): 2343-51, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26524122

RESUMO

Some chemicals in the environment possess the potential to interact with the endocrine system in the human body. Multiple receptors are involved in the endocrine system; estrogen receptor α (ERα) plays very important roles in endocrine activity and is the most studied receptor. Understanding and predicting estrogenic activity of chemicals facilitates the evaluation of their endocrine activity. Hence, we have developed a decision forest classification model to predict chemical binding to ERα using a large training data set of 3308 chemicals obtained from the U.S. Food and Drug Administration's Estrogenic Activity Database. We tested the model using cross validations and external data sets of 1641 chemicals obtained from the U.S. Environmental Protection Agency's ToxCast project. The model showed good performance in both internal (92% accuracy) and external validations (∼ 70-89% relative balanced accuracies), where the latter involved the validations of the model across different ER pathway-related assays in ToxCast. The important features that contribute to the prediction ability of the model were identified through informative descriptor analysis and were related to current knowledge of ER binding. Prediction confidence analysis revealed that the model had both high prediction confidence and accuracy for most predicted chemicals. The results demonstrated that the model constructed based on the large training data set is more accurate and robust for predicting ER binding of chemicals than the published models that have been developed using much smaller data sets. The model could be useful for the evaluation of ERα-mediated endocrine activity potential of environmental chemicals.


Assuntos
Modelos Teóricos , Receptores de Estrogênio/química , Bibliotecas de Moléculas Pequenas/química , Disruptores Endócrinos , Humanos , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Receptores de Estrogênio/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Estados Unidos , United States Food and Drug Administration
8.
Chem Res Toxicol ; 28(9): 1784-95, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26308263

RESUMO

Bisphenol A (BPA) replacement compounds are released to the environment and cause widespread human exposure. However, a lack of thorough safety evaluations on the BPA replacement compounds has raised public concerns. We assessed the endocrine disruption potential of BPA replacement compounds in the market to assist their safety evaluations. A literature search was conducted to ascertain the BPA replacement compounds in use. Available experimental estrogenic activity data of these compounds were extracted from the Estrogenic Activity Database (EADB) to assess their estrogenic potential. An in silico model was developed to predict the estrogenic activity of compounds lacking experimental data. Molecular dynamics (MD) simulations were performed to understand the mechanisms by which the estrogenic compounds bind to and activate the estrogen receptor (ER). Forty-five BPA replacement compounds were identified in the literature. Seven were more estrogenic and five less estrogenic than BPA, while six were nonestrogenic in EADB. A two-tier in silico model was developed based on molecular docking to predict the estrogenic activity of the 27 compounds lacking data. Eleven were predicted as ER binders and 16 as nonbinders. MD simulations revealed hydrophobic contacts and hydrogen bonds as the main interactions between ER and the estrogenic compounds.


Assuntos
Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Estrogênios/farmacologia , Fenóis/toxicidade , Simulação por Computador , Bases de Dados de Compostos Químicos , Simulação de Dinâmica Molecular
9.
BMC Bioinformatics ; 15 Suppl 11: S4, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25349983

RESUMO

BACKGROUND: Endocrine disrupting chemicals (EDCs) are exogenous compounds that interfere with the endocrine system of vertebrates, often through direct or indirect interactions with nuclear receptor proteins. Estrogen receptors (ERs) are particularly important protein targets and many EDCs are ER binders, capable of altering normal homeostatic transcription and signaling pathways. An estrogenic xenobiotic can bind ER as either an agonist or antagonist to increase or inhibit transcription, respectively. The receptor conformations in the complexes of ER bound with agonists and antagonists are different and dependent on interactions with co-regulator proteins that vary across tissue type. Assessment of chemical endocrine disruption potential depends not only on binding affinity to ERs, but also on changes that may alter the receptor conformation and its ability to subsequently bind DNA response elements and initiate transcription. Using both agonist and antagonist conformations of the ERα, we developed an in silico approach that can be used to differentiate agonist versus antagonist status of potential binders. METHODS: The approach combined separate molecular docking models for ER agonist and antagonist conformations. The ability of this approach to differentiate agonists and antagonists was first evaluated using true agonists and antagonists extracted from the crystal structures available in the protein data bank (PDB), and then further validated using a larger set of ligands from the literature. The usefulness of the approach was demonstrated with enrichment analysis in data sets with a large number of decoy ligands. RESULTS: The performance of individual agonist and antagonist docking models was found comparable to similar models in the literature. When combined in a competitive docking approach, they provided the ability to discriminate agonists from antagonists with good accuracy, as well as the ability to efficiently select true agonists and antagonists from decoys during enrichment analysis. CONCLUSION: This approach enables evaluation of potential ER biological function changes caused by chemicals bound to the receptor which, in turn, allows the assessment of a chemical's endocrine disrupting potential. The approach can be used not only by regulatory authorities to perform risk assessments on potential EDCs but also by the industry in drug discovery projects to screen for potential agonists and antagonists.


Assuntos
Disruptores Endócrinos/química , Antagonistas do Receptor de Estrogênio/química , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/antagonistas & inibidores , Estrogênios/química , Simulação de Acoplamento Molecular/métodos , Simulação por Computador , Disruptores Endócrinos/metabolismo , Antagonistas do Receptor de Estrogênio/metabolismo , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Ligantes
10.
BMC Bioinformatics ; 15 Suppl 11: S6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25350283

RESUMO

BACKGROUND: Due to a significant decline in the costs associated with next-generation sequencing, it has become possible to decipher the genetic architecture of a population by sequencing a large number of individuals to a deep coverage. The Korean Personal Genomes Project (KPGP) recently sequenced 35 Korean genomes at high coverage using the Illumina Hiseq platform and made the deep sequencing data publicly available, providing the scientific community opportunities to decipher the genetic architecture of the Korean population. METHODS: In this study, we used two single nucleotide variant (SNV) calling pipelines: mapping the raw reads obtained from whole genome sequencing of 35 Korean individuals in KPGP using BWA and SOAP2 followed by SNV calling using SAMtools and SOAPsnp, respectively. The consensus SNVs obtained from the two SNV pipelines were used to represent the SNVs of the Korean population. We compared these SNVs to those from 17 other populations provided by the HapMap consortium and the 1000 Genomes Project (1KGP) and identified SNVs that were only present in the Korean population. We studied the mutation spectrum and analyzed the genes of non-synonymous SNVs only detected in the Korean population. RESULTS: We detected a total of 8,555,726 SNVs in the 35 Korean individuals and identified 1,213,613 SNVs detected in at least one Korean individual (SNV-1) and 12,640 in all of 35 Korean individuals (SNV-35) but not in 17 other populations. In contrast with the SNVs common to other populations in HapMap and 1KGP, the Korean only SNVs had high percentages of non-silent variants, emphasizing the unique roles of these Korean only SNVs in the Korean population. Specifically, we identified 8,361 non-synonymous Korean only SNVs, of which 58 SNVs existed in all 35 Korean individuals. The 5,754 genes of non-synonymous Korean only SNVs were highly enriched in some metabolic pathways. We found adhesion is the top disease term associated with SNV-1 and Nelson syndrome is the only disease term associated with SNV-35. We found that a significant number of Korean only SNVs are in genes that are associated with the drug term of adenosine. CONCLUSION: We identified the SNVs that were found in the Korean population but not seen in other populations, and explored the corresponding genes and pathways as well as the associated disease terms and drug terms. The results expand our knowledge of the genetic architecture of the Korean population, which will benefit the implementation of personalized medicine for the Korean population.


Assuntos
Povo Asiático/genética , Polimorfismo de Nucleotídeo Único , Doença/genética , Ontologia Genética , Estudos de Associação Genética , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Coreia (Geográfico) , Mutação , Alinhamento de Sequência , Análise de Sequência de DNA , Software
11.
Am J Pathol ; 182(4): 1180-7, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23395088

RESUMO

Drug-induced liver injury (DILI) may present any morphologic characteristic of acute or chronic liver disease with no standardized terminology in place. Defining lexemes of DILI histopathology would allow the development of advanced knowledge discovery and data mining tools for across comparisons of publicly available information. For these purposes, a DILI ontology (DILIo) was developed by using the Unified Medical Language System tool and the standardized terminology of the Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT). The DILIo was entrained on findings of 114 US Food and Drug Administration-approved drugs by extracting all clinically DILI-related histopathologic descriptions for 1082 liver biopsy samples, which were then analyzed using the Unified Medical Language System MetaMap and subsequently mapped to the SNOMED CT. The DILIo provides a standard means to describe and organize liver injury induced by drugs, enabling comparative analysis of drugs within and across histopathologic terms. The analysis showed that flutamide, troglitazone, diclofenac, isoniazid, and tamoxifen were reported to have the most diverse histopathologic observations in liver biopsy. Necrosis, cholestasis, fatty degeneration, fibrosis, infiltrate, and hepatic necrosis were the most frequent terms used as descriptors of histopathologic features of DILI. In conclusion, DILIo entrains different algorithms for an efficient meta-analysis of published findings for an improved understanding of mechanisms and clinical characteristics of DILI.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/patologia , Terminologia como Assunto , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Fígado/patologia , Publicações , Tioguanina/efeitos adversos
12.
Exp Biol Med (Maywood) ; 248(21): 1927-1936, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37997891

RESUMO

The coronavirus disease 2019 (COVID-19) global pandemic resulted in millions of people becoming infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and close to seven million deaths worldwide. It is essential to further explore and design effective COVID-19 treatment drugs that target the main protease of SARS-CoV-2, a major target for COVID-19 drugs. In this study, machine learning was applied for predicting the SARS-CoV-2 main protease binding of Food and Drug Administration (FDA)-approved drugs to assist in the identification of potential repurposing candidates for COVID-19 treatment. Ligands bound to the SARS-CoV-2 main protease in the Protein Data Bank and compounds experimentally tested in SARS-CoV-2 main protease binding assays in the literature were curated. These chemicals were divided into training (516 chemicals) and testing (360 chemicals) data sets. To identify SARS-CoV-2 main protease binders as potential candidates for repurposing to treat COVID-19, 1188 FDA-approved drugs from the Liver Toxicity Knowledge Base were obtained. A random forest algorithm was used for constructing predictive models based on molecular descriptors calculated using Mold2 software. Model performance was evaluated using 100 iterations of fivefold cross-validations which resulted in 78.8% balanced accuracy. The random forest model that was constructed from the whole training dataset was used to predict SARS-CoV-2 main protease binding on the testing set and the FDA-approved drugs. Model applicability domain and prediction confidence on drugs predicted as the main protease binders discovered 10 FDA-approved drugs as potential candidates for repurposing to treat COVID-19. Our results demonstrate that machine learning is an efficient method for drug repurposing and, thus, may accelerate drug development targeting SARS-CoV-2.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Reposicionamento de Medicamentos/métodos , Algoritmo Florestas Aleatórias , Antivirais/uso terapêutico , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Simulação de Acoplamento Molecular , Proteases 3C de Coronavírus , Inibidores de Proteases/uso terapêutico , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo
13.
Front Bioinform ; 3: 1328613, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38250436

RESUMO

Numerous studies have been conducted on the US Food and Drug Administration (FDA) Adverse Events Reporting System (FAERS) database to assess post-marketing reporting rates for drug safety review and risk assessment. However, the drug names in the adverse event (AE) reports from FAERS were heterogeneous due to a lack of uniformity of information submitted mandatorily by pharmaceutical companies and voluntarily by patients, healthcare professionals, and the public. Studies using FAERS and other spontaneous reporting AEs database without drug name normalization may encounter incomplete collection of AE reports from non-standard drug names and the accuracies of the results might be impacted. In this study, we demonstrated applicability of RxNorm, developed by the National Library of Medicine, for drug name normalization in FAERS. Using prescription opioids as a case study, we used RxNorm application program interface (API) to map all FDA-approved prescription opioids described in FAERS AE reports to their equivalent RxNorm Concept Unique Identifiers (RxCUIs) and RxNorm names. The different names of the opioids were then extracted, and their usage frequencies were calculated in collection of more than 14.9 million AE reports for 13 FDA-approved prescription opioid classes, reported over 17 years. The results showed that a significant number of different names were consistently used for opioids in FAERS reports, with 2,086 different names (out of 7,892) used at least three times and 842 different names used at least ten times for each of the 92 RxNorm names of FDA-approved opioids. Our method of using RxNorm API mapping was confirmed to be efficient and accurate and capable of reducing the heterogeneity of prescription opioid names significantly in the AE reports in FAERS; meanwhile, it is expected to have a broad application to different sets of drug names from any database where drug names are diverse and unnormalized. It is expected to be able to automatically standardize and link different representations of the same drugs to build an intact and high-quality database for diverse research, particularly postmarketing data analysis in pharmacovigilance initiatives.

14.
Exp Biol Med (Maywood) ; 248(21): 1944-1951, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-38158803

RESUMO

The opioid epidemic has become a serious national crisis in the United States. An indepth systematic analysis of opioid-related adverse events (AEs) can clarify the risks presented by opioid exposure, as well as the individual risk profiles of specific opioid drugs and the potential relationships among the opioids. In this study, 92 opioids were identified from the list of all Food and Drug Administration (FDA)-approved drugs, annotated by RxNorm and were classified into 13 opioid groups: buprenorphine, codeine, dihydrocodeine, fentanyl, hydrocodone, hydromorphone, meperidine, methadone, morphine, oxycodone, oxymorphone, tapentadol, and tramadol. A total of 14,970,399 AE reports were retrieved and downloaded from the FDA Adverse Events Reporting System (FAERS) from 2004, Quarter 1 to 2020, Quarter 3. After data processing, Empirical Bayes Geometric Mean (EBGM) was then applied which identified 3317 pairs of potential risk signals within the 13 opioid groups. Based on these potential safety signals, a comparative analysis was pursued to provide a global overview of opioid-related AEs for all 13 groups of FDA-approved prescription opioids. The top 10 most reported AEs for each opioid class were then presented. Both network analysis and hierarchical clustering analysis were conducted to further explore the relationship between opioids. Results from the network analysis revealed a close association among fentanyl, oxycodone, hydrocodone, and hydromorphone, which shared more than 22 AEs. In addition, much less commonly reported AEs were shared among dihydrocodeine, meperidine, oxymorphone, and tapentadol. On the contrary, the hierarchical clustering analysis further categorized the 13 opioid classes into two groups by comparing the full profiles of presence/absence of AEs. The results of network analysis and hierarchical clustering analysis were not only consistent and cross-validated each other but also provided a better and deeper understanding of the associations and relationships between the 13 opioid groups with respect to their adverse effect profiles.


Assuntos
Analgésicos Opioides , Oxicodona , Analgésicos Opioides/efeitos adversos , Teorema de Bayes , Mineração de Dados , Fentanila , Hidrocodona , Hidromorfona , Meperidina , Oximorfona , Tapentadol , Estados Unidos/epidemiologia
15.
BMC Genomics ; 13: 325, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22817640

RESUMO

BACKGROUND: Large amounts of mammalian protein-protein interaction (PPI) data have been generated and are available for public use. From a systems biology perspective, Proteins/genes interactions encode the key mechanisms distinguishing disease and health, and such mechanisms can be uncovered through network analysis. An effective network analysis tool should integrate different content-specific PPI databases into a comprehensive network format with a user-friendly platform to identify key functional modules/pathways and the underlying mechanisms of disease and toxicity. RESULTS: atBioNet integrates seven publicly available PPI databases into a network-specific knowledge base. Knowledge expansion is achieved by expanding a user supplied proteins/genes list with interactions from its integrated PPI network. The statistically significant functional modules are determined by applying a fast network-clustering algorithm (SCAN: a Structural Clustering Algorithm for Networks). The functional modules can be visualized either separately or together in the context of the whole network. Integration of pathway information enables enrichment analysis and assessment of the biological function of modules. Three case studies are presented using publicly available disease gene signatures as a basis to discover new biomarkers for acute leukemia, systemic lupus erythematosus, and breast cancer. The results demonstrated that atBioNet can not only identify functional modules and pathways related to the studied diseases, but this information can also be used to hypothesize novel biomarkers for future analysis. CONCLUSION: atBioNet is a free web-based network analysis tool that provides a systematic insight into proteins/genes interactions through examining significant functional modules. The identified functional modules are useful for determining underlying mechanisms of disease and biomarker discovery. It can be accessed at: http://www.fda.gov/ScienceResearch/BioinformaticsTools/ucm285284.htm.


Assuntos
Biomarcadores/metabolismo , Genômica , Software , Algoritmos , Análise por Conglomerados , Bases de Dados de Proteínas , Humanos , Redes e Vias Metabólicas , Mapas de Interação de Proteínas , Interface Usuário-Computador
16.
Molecules ; 17(3): 3383-406, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22421792

RESUMO

An interagency collaboration was established to model chemical interactions that may cause adverse health effects when an exposure to a mixture of chemicals occurs. Many of these chemicals--drugs, pesticides, and environmental pollutants--interact at the level of metabolic biotransformations mediated by cytochrome P450 (CYP) enzymes. In the present work, spectral data-activity relationship (SDAR) and structure-activity relationship (SAR) approaches were used to develop machine-learning classifiers of inhibitors and non-inhibitors of the CYP3A4 and CYP2D6 isozymes. The models were built upon 602 reference pharmaceutical compounds whose interactions have been deduced from clinical data, and 100 additional chemicals that were used to evaluate model performance in an external validation (EV) test. SDAR is an innovative modeling approach that relies on discriminant analysis applied to binned nuclear magnetic resonance (NMR) spectral descriptors. In the present work, both 1D ¹³C and 1D ¹5N-NMR spectra were used together in a novel implementation of the SDAR technique. It was found that increasing the binning size of 1D ¹³C-NMR and ¹5N-NMR spectra caused an increase in the tenfold cross-validation (CV) performance in terms of both the rate of correct classification and sensitivity. The results of SDAR modeling were verified using SAR. For SAR modeling, a decision forest approach involving from 6 to 17 Mold2 descriptors in a tree was used. Average rates of correct classification of SDAR and SAR models in a hundred CV tests were 60% and 61% for CYP3A4, and 62% and 70% for CYP2D6, respectively. The rates of correct classification of SDAR and SAR models in the EV test were 73% and 86% for CYP3A4, and 76% and 90% for CYP2D6, respectively. Thus, both SDAR and SAR methods demonstrated a comparable performance in modeling a large set of structurally diverse data. Based on unique NMR structural descriptors, the new SDAR modeling method complements the existing SAR techniques, providing an independent estimator that can increase confidence in a structure-activity assessment. When modeling was applied to hazardous environmental chemicals, it was found that up to 20% of them may be substrates and up to 10% of them may be inhibitors of the CYP3A4 and CYP2D6 isoforms. The developed models provide a rare opportunity for the environmental health branch of the public health service to extrapolate to hazardous chemicals directly from human clinical data. Therefore, the pharmacological and environmental health branches are both expected to benefit from these reported models.


Assuntos
Inibidores do Citocromo P-450 CYP2D6 , Citocromo P-450 CYP2D6/metabolismo , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/metabolismo , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Poluentes Ambientais/química , Poluentes Ambientais/toxicidade , Inibidores Enzimáticos/química , Inibidores Enzimáticos/toxicidade , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Relação Estrutura-Atividade
17.
Molecules ; 17(3): 3407-60, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22421793

RESUMO

Polypharmacy increasingly has become a topic of public health concern, particularly as the U.S. population ages. Drug labels often contain insufficient information to enable the clinician to safely use multiple drugs. Because many of the drugs are bio-transformed by cytochrome P450 (CYP) enzymes, inhibition of CYP activity has long been associated with potentially adverse health effects. In an attempt to reduce the uncertainty pertaining to CYP-mediated drug-drug/chemical interactions, an interagency collaborative group developed a consensus approach to prioritizing information concerning CYP inhibition. The consensus involved computational molecular docking, spectral data-activity relationship (SDAR), and structure-activity relationship (SAR) models that addressed the clinical potency of CYP inhibition. The models were built upon chemicals that were categorized as either potent or weak inhibitors of the CYP3A4 isozyme. The categorization was carried out using information from clinical trials because currently available in vitro high-throughput screening data were not fully representative of the in vivo potency of inhibition. During categorization it was found that compounds, which break the Lipinski rule of five by molecular weight, were about twice more likely to be inhibitors of CYP3A4 compared to those, which obey the rule. Similarly, among inhibitors that break the rule, potent inhibitors were 2-3 times more frequent. The molecular docking classification relied on logistic regression, by which the docking scores from different docking algorithms, CYP3A4 three-dimensional structures, and binding sites on them were combined in a unified probabilistic model. The SDAR models employed a multiple linear regression approach applied to binned 1D ¹³C-NMR and 1D ¹5N-NMR spectral descriptors. Structure-based and physical-chemical descriptors were used as the basis for developing SAR models by the decision forest method. Thirty-three potent inhibitors and 88 weak inhibitors of CYP3A4 were used to train the models. Using these models, a synthetic majority rules consensus classifier was implemented, while the confidence of estimation was assigned following the percent agreement strategy. The classifier was applied to a testing set of 120 inhibitors not included in the development of the models. Five compounds of the test set, including known strong inhibitors dalfopristin and tioconazole, were classified as probable potent inhibitors of CYP3A4. Other known strong inhibitors, such as lopinavir, oltipraz, quercetin, raloxifene, and troglitazone, were among 18 compounds classified as plausible potent inhibitors of CYP3A4. The consensus estimation of inhibition potency is expected to aid in the nomination of pharmaceuticals, dietary supplements, environmental pollutants, and occupational and other chemicals for in-depth evaluation of the CYP3A4 inhibitory activity. It may serve also as an estimate of chemical interactions via CYP3A4 metabolic pharmacokinetic pathways occurring through polypharmacy and nutritional and environmental exposures to chemical mixtures.


Assuntos
Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/metabolismo , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A , Poluentes Ambientais/toxicidade , Inibidores Enzimáticos/toxicidade , Humanos , Relação Estrutura-Atividade
18.
Nanomaterials (Basel) ; 12(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234502

RESUMO

Metal-organic frameworks (MOFs), a class of porous nanomaterials, have been widely used in gas adsorption-based applications due to their high porosities and chemical tunability. To facilitate the discovery of high-performance MOFs for different applications, a variety of machine learning models have been developed to predict the gas adsorption capacities of MOFs. Most of the predictive models are developed using traditional machine learning algorithms. However, the continuously increasing sizes of MOF datasets and the complicated relationships between MOFs and their gas adsorption capacities make deep learning a suitable candidate to handle such big data with increased computational power and accuracy. In this study, we developed models for predicting gas adsorption capacities of MOFs using two deep learning algorithms, multilayer perceptron (MLP) and long short-term memory (LSTM) networks, with a hypothetical set of about 130,000 structures of MOFs with methane and carbon dioxide adsorption data at different pressures. The models were evaluated using 10 iterations of 10-fold cross validations and 100 holdout validations. The MLP and LSTM models performed similarly with high prediction accuracy. The models for predicting gas adsorption at a higher pressure outperformed the models for predicting gas adsorption at a lower pressure. The deep learning models are more accurate than the random forest models reported in the literature, especially for predicting gas adsorption capacities at low pressures. Our results demonstrated that deep learning algorithms have a great potential to generate models that can accurately predict the gas adsorption capacities of MOFs.

19.
Genome Biol ; 23(1): 2, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34980216

RESUMO

BACKGROUND: Reproducible detection of inherited variants with whole genome sequencing (WGS) is vital for the implementation of precision medicine and is a complicated process in which each step affects variant call quality. Systematically assessing reproducibility of inherited variants with WGS and impact of each step in the process is needed for understanding and improving quality of inherited variants from WGS. RESULTS: To dissect the impact of factors involved in detection of inherited variants with WGS, we sequence triplicates of eight DNA samples representing two populations on three short-read sequencing platforms using three library kits in six labs and call variants with 56 combinations of aligners and callers. We find that bioinformatics pipelines (callers and aligners) have a larger impact on variant reproducibility than WGS platform or library preparation. Single-nucleotide variants (SNVs), particularly outside difficult-to-map regions, are more reproducible than small insertions and deletions (indels), which are least reproducible when > 5 bp. Increasing sequencing coverage improves indel reproducibility but has limited impact on SNVs above 30×. CONCLUSIONS: Our findings highlight sources of variability in variant detection and the need for improvement of bioinformatics pipelines in the era of precision medicine with WGS.


Assuntos
Genoma Humano , Polimorfismo de Nucleotídeo Único , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação INDEL , Reprodutibilidade dos Testes , Sequenciamento Completo do Genoma
20.
Chem Res Toxicol ; 24(9): 1486-93, 2011 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-21834575

RESUMO

RNA-Seq has been increasingly used for the quantification and characterization of transcriptomes. The ongoing development of the technology promises the more accurate measurement of gene expression. However, its benefits over widely accepted microarray technologies have not been adequately assessed, especially in toxicogenomics studies. The goal of this study is to enhance the scientific community's understanding of the advantages and challenges of RNA-Seq in the quantification of gene expression by comparing analysis results from RNA-Seq and microarray data on a toxicogenomics study. A typical toxicogenomics study design was used to compare the performance of an RNA-Seq approach (Illumina Genome Analyzer II) to a microarray-based approach (Affymetrix Rat Genome 230 2.0 arrays) for detecting differentially expressed genes (DEGs) in the kidneys of rats treated with aristolochic acid (AA), a carcinogenic and nephrotoxic chemical most notably used for weight loss. We studied the comparability of the RNA-Seq and microarray data in terms of absolute gene expression, gene expression patterns, differentially expressed genes, and biological interpretation. We found that RNA-Seq was more sensitive in detecting genes with low expression levels, while similar gene expression patterns were observed for both platforms. Moreover, although the overlap of the DEGs was only 40-50%, the biological interpretation was largely consistent between the RNA-Seq and microarray data. RNA-Seq maintained a consistent biological interpretation with time-tested microarray platforms while generating more sensitive results. However, there is clearly a need for future investigations to better understand the advantages and limitations of RNA-Seq in toxicogenomics studies and environmental health research.


Assuntos
Ácidos Aristolóquicos/toxicidade , Carcinógenos/toxicidade , Perfilação da Expressão Gênica/métodos , Rim/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência de RNA/métodos , Animais , Testes de Carcinogenicidade/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Rim/metabolismo , Ratos , Toxicogenética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA