Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage Clin ; 12: 928-939, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27882298

RESUMO

OBJECTIVE: High frequency oscillations (HFOs; > 80 Hz), especially fast ripples (FRs, 250-500 Hz), are novel biomarkers for epileptogenic tissue. The pathophysiology suggests enhanced functional connectivity within FR generating tissue. Our aim was to determine the relation between brain areas showing FRs and 'baseline' functional connectivity within EEG networks, especially in the high frequency bands. METHODS: We marked FRs, ripples (80-250 Hz) and spikes in the electrocorticogram of 14 patients with refractory temporal lobe epilepsy. We assessed 'baseline' functional connectivity in epochs free of epileptiform events within these recordings, using the phase lag index. We computed the Eigenvector Centrality (EC) per channel in the FR and gamma band network. We compared EC between channels that did or did not show events at other moments in time. RESULTS: FR-band EC was higher in channels with than without spikes. Gamma-band EC was lower in channels with ripples and FRs. CONCLUSIONS: We confirmed previous findings of functional isolation in the gamma-band and found a first proof of functional integration in the FR-band network of channels covering presumed epileptogenic tissue. SIGNIFICANCE: 'Baseline' high-frequency network parameters might help intra-operative recognition of epileptogenic tissue without the need for waiting for events. These findings can increase our understanding of the 'architecture' of epileptogenic networks and help unravel the pathophysiology of HFOs.


Assuntos
Ondas Encefálicas/fisiologia , Eletrocorticografia/métodos , Epilepsia/fisiopatologia , Ritmo Gama/fisiologia , Rede Nervosa/fisiopatologia , Adolescente , Adulto , Criança , Pré-Escolar , Epilepsia/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
2.
Neurophysiol Clin ; 44(5): 479-90, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25438980

RESUMO

AIM OF THE STUDY: A novel method for removal of artifacts from long-term EEGs was developed and evaluated. The method targets most types of artifacts and works without user interaction. MATERIALS AND METHODS: The method is based on a neurophysiological model and utilizes an iterative Bayesian estimation scheme. The performance was evaluated by two independent reviewers. From 48 consecutive epilepsy patients, 102 twenty-second seizure onset EEGs were used to evaluate artifacts before and after artifact removal and regarding the erroneous attenuation of true EEG patterns. RESULTS: The two reviewers found "major improvements" in 59% and 49% of the EEG epochs respectively, and "minor improvements" in 38% and 47% of the epochs, respectively. The answer "similar or worse" was chosen only in 0% and 4%, respectively. Neither of the reviewers found "major attenuations", i.e., a significant attenuation of significant EEG patterns. Most EEG epochs were found to be either "mostly preserved" or "all preserved". A "minor attenuation" was found only in 0% and 17%, respectively. CONCLUSIONS: The proposed artifact removal algorithm effectively removes artifacts from EEGs and improves the readability of EEGs impaired by artifacts. Only in rare cases did the algorithm slightly attenuate EEG patterns, but the clear visibility of significant patterns was preserved in all cases of this study. Current artifact removal methods work either semi-automatically or with insufficient reliability for clinical use, whereas the "PureEEG" method works fully automatically and leaves true EEG patterns unchanged with a high reliability.


Assuntos
Algoritmos , Eletroencefalografia/métodos , Epilepsia/fisiopatologia , Monitorização Fisiológica/métodos , Processamento de Sinais Assistido por Computador , Artefatos , Teorema de Bayes , Eletroencefalografia/instrumentação , Processamento Eletrônico de Dados , Feminino , Humanos , Masculino , Modelos Neurológicos , Monitorização Fisiológica/instrumentação , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA