Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neuropediatrics ; 55(3): 209-212, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38286424

RESUMO

Biallelic variants in PTRHD1 have been associated with autosomal recessive intellectual disability, spasticity, and juvenile parkinsonism, with few reported cases. Here, we present the clinical and genetic findings of a female of Austrian origin exhibiting infantile neurodevelopmental abnormalities, intellectual disability, and childhood-onset parkinsonian features, consistent with the established phenotypic spectrum. Notably, she developed genetic generalized epilepsy at age 4, persisting into adulthood. Using diagnostic exome sequencing, we identified a homozygous missense variant (c.365G > A, p.(Arg122Gln)) in PTRHD1 (NM_001013663). In summary, our findings not only support the existing link between biallelic PTRHD1 variants and parkinsonism with neurodevelopmental abnormalities but also suggest a potential extension of the phenotypic spectrum to include generalized epilepsy.


Assuntos
Epilepsia Generalizada , Deficiência Intelectual , Mutação de Sentido Incorreto , Transtornos Parkinsonianos , Humanos , Feminino , Deficiência Intelectual/genética , Epilepsia Generalizada/genética , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/complicações , Homozigoto , Pré-Escolar
2.
Alzheimer Dis Assoc Disord ; 37(4): 315-321, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38015424

RESUMO

BACKGROUND: Despite substantial progress made in the past decades, the pathogenesis of sporadic Alzheimer disease (sAD) and related biological markers of the disease are still controversially discussed. Cerebrospinal fluid and functional brain imaging markers have been established to support the clinical diagnosis of sAD. Yet, due to the invasiveness of such diagnostics, less burdensome markers have been increasingly investigated in the past years. Among such markers, extracellular vesicles may yield promise in (early) diagnostics and treatment monitoring in sAD. MATERIALS AND METHODS: In this pilot study, we collected the blood plasma of 18 patients with sAD and compared the proteome of extracted extracellular vesicles with the proteome of 11 age-matched healthy controls. The resulting proteomes were characterized by Gene Ontology terms and between-group statistics. RESULTS: Ten distinct proteins were found to significantly differ between sAD patients and controls (P<0.05, False Discovery Rate, corrected). These proteins included distinct immunoglobulins, fibronectin, and apolipoproteins. CONCLUSIONS: These findings lend further support for exosomal changes in neurodegenerative disorders, and particularly in sAD. Further proteomic research could decisively advance our knowledge of sAD pathophysiology as much as it could foster the development of clinically meaningful biomarkers.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Projetos Piloto , Proteoma , Proteômica , Biomarcadores
3.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958765

RESUMO

Patients with sepsis-associated delirium (SAD) show severe neurological impairment, often require an intensive care unit (ICU) stay and have a high risk of mortality. Hence, useful biomarkers for early detection of SAD are urgently needed. Extracellular vesicles (EVs) and their cargo are known to maintain normal physiology but also have been linked to numerous disease states. Here, we sought to identify differentially expressed proteins in plasma EVs from SAD patients as potential biomarkers for SAD. Plasma EVs from 11 SAD patients and 11 age-matched septic patients without delirium (non-SAD) were isolated by differential centrifugation, characterized by nanoparticle tracking analysis, transmission electron microscopy and Western blot analysis. Differential EV protein expression was determined by mass spectrometry and the resulting proteomes were characterized by Gene Ontology term and between-group statistics. As preliminary results because of the small group size, five distinct proteins showed significantly different expression pattern between SAD and non-SAD patients (p ≤ 0.05). In SAD patients, upregulated proteins included paraoxonase-1 (PON1), thrombospondin 1 (THBS1), and full fibrinogen gamma chain (FGG), whereas downregulated proteins comprised immunoglobulin (IgHV3) and complement subcomponent (C1QC). Thus, plasma EVs of SAD patients show significant changes in the expression of distinct proteins involved in immune system regulation and blood coagulation as well as in lipid metabolism in this pilot study. They might be a potential indicator for to the pathogenesis of SAD and thus warrant further examination as potential biomarkers, but further research is needed to expand on these findings in longitudinal study designs with larger samples and comprehensive polymodal data collection.


Assuntos
Vesículas Extracelulares , Encefalopatia Associada a Sepse , Humanos , Projetos Piloto , Encefalopatia Associada a Sepse/metabolismo , Estudos Longitudinais , Vesículas Extracelulares/metabolismo , Proteoma/metabolismo , Biomarcadores/metabolismo , Arildialquilfosfatase/metabolismo
4.
Gastroenterology ; 161(4): 1288-1302.e13, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34224739

RESUMO

BACKGROUND & AIMS: DNA mismatch repair deficiency drives microsatellite instability (MSI). Cells with MSI accumulate numerous frameshift mutations. Frameshift mutations affecting cancer-related genes may promote tumorigenesis and, therefore, are shared among independently arising MSI tumors. Consequently, such recurrent frameshift mutations can give rise to shared immunogenic frameshift peptides (FSPs) that represent ideal candidates for a vaccine against MSI cancer. Pathogenic germline variants of mismatch repair genes cause Lynch syndrome (LS), a hereditary cancer syndrome affecting approximately 20-25 million individuals worldwide. Individuals with LS are at high risk of developing MSI cancer. Previously, we demonstrated safety and immunogenicity of an FSP-based vaccine in a phase I/IIa clinical trial in patients with a history of MSI colorectal cancer. However, the cancer-preventive effect of FSP vaccination in the scenario of LS has not yet been demonstrated. METHODS: A genome-wide database of 488,235 mouse coding mononucleotide repeats was established, from which a set of candidates was selected based on repeat length, gene expression, and mutation frequency. In silico prediction, in vivo immunogenicity testing, and epitope mapping was used to identify candidates for FSP vaccination. RESULTS: We identified 4 shared FSP neoantigens (Nacad [FSP-1], Maz [FSP-1], Senp6 [FSP-1], Xirp1 [FSP-1]) that induced CD4/CD8 T cell responses in naïve C57BL/6 mice. Using VCMsh2 mice, which have a conditional knockout of Msh2 in the intestinal tract and develop intestinal cancer, we showed vaccination with a combination of only 4 FSPs significantly increased FSP-specific adaptive immunity, reduced intestinal tumor burden, and prolonged overall survival. Combination of FSP vaccination with daily naproxen treatment potentiated immune response, delayed tumor growth, and prolonged survival even more effectively than FSP vaccination alone. CONCLUSIONS: Our preclinical findings support a clinical strategy of recurrent FSP neoantigen vaccination for LS cancer immunoprevention.


Assuntos
Antígenos de Neoplasias/farmacologia , Vacinas Anticâncer/farmacologia , Neoplasias Colorretais Hereditárias sem Polipose/tratamento farmacológico , Mutação da Fase de Leitura , Fenômenos Imunogenéticos , Fragmentos de Peptídeos/farmacologia , Adjuvantes Imunológicos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/imunologia , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Bases de Dados Genéticas , Modelos Animais de Doenças , Epitopos , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 2 Homóloga a MutS/genética , Naproxeno/farmacologia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Carga Tumoral/efeitos dos fármacos , Microambiente Tumoral , Vacinação , Eficácia de Vacinas
5.
Int J Mol Sci ; 23(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35742860

RESUMO

Galectin-4 (Gal4) has been suggested to function as a tumor suppressor in colorectal cancer (CRC). In order to systematically explore its function in CRC, we established a CRC cell line where Gal4 expression can be regulated via the doxycycline (dox)-inducible expression of a single copy wildtype LGALS4 transgene generated by recombinase-mediated cassette exchange (RMCE). Using this model and applying in-depth proteomic and phosphoproteomic analyses, we systematically screened for intracellular changes induced by Gal4 expression. Overall, 3083 cellular proteins and 2071 phosphosites were identified and quantified, of which 1603 could be matched and normalized to their protein expression levels. A bioinformatic analysis revealed that most of the regulated proteins and phosphosites can be localized in the nucleus and are categorized as nucleic acid-binding proteins. The top candidates whose expression was modulated by Gal4 are PURB, MAPKAPK3, BTF3 and BCAR1, while the prime candidates with altered phosphorylation included ZBTB7A, FOXK1, PURB and CK2beta. In order to validate the (phospho)proteomic data, we confirmed these candidates by a radiometric metabolic-labelling and immunoprecipitation strategy. All candidates exert functions in the transcriptional or translational control, indicating that Gal4 might be involved in these processes by affecting the expression or activity of these proteins.


Assuntos
Neoplasias Colorretais , Proteômica , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Proteínas de Ligação a DNA , Fatores de Transcrição Forkhead , Galectina 4 , Humanos , Espaço Intracelular/metabolismo , Proteômica/métodos , Recombinases , Fatores de Transcrição
6.
Transfus Med Hemother ; 48(1): 48-59, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33708052

RESUMO

BACKGROUND/AIMS: Extracellular vesicles (EVs), including microvesicles and exosomes, deliver bioactive cargo mediating intercellular communication in physiological and pathological conditions. EVs are increasingly investigated as therapeutic agents and targets, but also as disease biomarkers. However, a definite consensus regarding EV isolation methods is lacking, which makes it intricate to standardize research practices and eventually reach a desirable level of data comparability. In our study, we performed an inter-laboratory comparison of EV isolation based on a differential ultracentrifugation protocol carried out in 4 laboratories in 2 independent rounds of isolation. METHODS: Conditioned medium of colorectal cancer cells was prepared and pooled by 1 person and distributed to each of the participating laboratories for isolation according to a pre-defined protocol. After EV isolation in each laboratory, quantification and characterization of isolated EVs was collectively done by 1 person having the highest expertise in the respective test method: Western blot, flow cytometry (fluorescence-activated cell sorting [FACS], nanoparticle tracking analysis (NTA), and transmission electron microscopy (TEM). RESULTS: EVs were visualized with TEM, presenting similar cup-shaped and spherical morphology and sizes ranging from 30 to 150 nm. NTA results showed similar size ranges of particles in both isolation rounds. EV preparations showed high purity by the expression of EV marker proteins CD9, CD63, CD81, Alix, and TSG101, and the lack of calnexin. FACS analysis of EVs revealed intense staining for CD63 and CD81 but lower levels for CD9 and TSG101. Preparations from 1 laboratory presented significantly lower particle numbers (p < 0.0001), most probably related to increased processing time. However, even when standardizing processing time, particle yields still differed significantly between groups, indicating inter-laboratory differences in the efficiency of EV isolation. Importantly, no relation was observed between centrifugation speed/k-factor and EV yield. CONCLUSIONS: Our findings demonstrate that quantitative differences in EV yield might be due to equipment- and operator-dependent technical variability in ultracentrifugation-based EV isolation. Furthermore, our study emphasizes the need to standardize technical parameters such as the exact run speed and k-factor in order to transfer protocols between different laboratories. This hints at substantial inter-laboratory biases that should be assessed in multi-centric studies.

7.
Exp Cell Res ; 379(2): 129-139, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30935948

RESUMO

Galectins are ß-galactoside binding proteins which possess a variety of functions including modulation of apoptosis, growth and differentiation. Hence, alterations in the expression profile have been associated with loss of cellular homeostasis contributing to tumor growth and progression. Though galectin-12 is significantly downregulated in several tumor entities, including colon cancer, its impact on cellular homeostasis as well as galectin-12 specific binding partners have not been identified so far. We therefore established an experimental strategy which is based on reversible cross-link immunoprecipitation to capture the galectin-12 protein interactome in colon cancer cells. By applying this approach, we identified 10 novel candidates of galectin-12 interacting proteins including the neutral amino acid exchanger SLC1A5. Remarkably, we uncovered that binding of galectin-12 to SLC1A5 significantly reduced glutamine uptake in our model cell line. Consequently, utilization of glutamine carbon for biomass synthesis was profoundly affected, suggesting galectin-12 as a novel inhibitor of glutamine anaplerosis in colon cancer cells. More detailed analysis revealed that colon cancer cells can counteract galectin-12 mediated glutamine deprivation by induction of compensatory mechanisms which facilitate adaption to low-glutamine conditions and thus survival.


Assuntos
Sistema ASC de Transporte de Aminoácidos/metabolismo , Neoplasias do Colo/metabolismo , Galectinas/metabolismo , Glutamina/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Apoptose/fisiologia , Diferenciação Celular/fisiologia , Colo/metabolismo , Neoplasias do Colo/patologia , Humanos , Células Tumorais Cultivadas
8.
Int J Mol Sci ; 21(15)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32718059

RESUMO

DNA mismatch repair-deficient colorectal cancers (CRCs) accumulate numerous frameshift mutations at repetitive sequences recognized as microsatellite instability (MSI). When coding mononucleotide repeats (cMNRs) are affected, tumors accumulate frameshift mutations and premature termination codons (PTC) potentially leading to truncated proteins. Nonsense-mediated RNA decay (NMD) can degrade PTC-containing transcripts and protect from such faulty proteins. As it also regulates normal transcripts and cellular physiology, we tested whether NMD genes themselves are targets of MSI frameshift mutations. A high frequency of cMNR frameshift mutations in the UPF3A gene was found in MSI CRC cell lines (67.7%), MSI colorectal adenomas (55%) and carcinomas (63%). In normal colonic crypts, UPF3A expression was restricted to single chromogranin A-positive cells. SILAC-based proteomic analysis of KM12 CRC cells revealed UPF3A-dependent down-regulation of several enzymes involved in cholesterol biosynthesis. Furthermore, reconstituted UPF3A expression caused alterations of 85 phosphosites in 52 phosphoproteins. Most of them (38/52, 73%) reside in nuclear phosphoproteins involved in regulation of gene expression and RNA splicing. Since UPF3A mutations can modulate the (phospho)proteomic signature and expression of enzymes involved in cholesterol metabolism in CRC cells, UPF3A may influence other processes than NMD and loss of UPF3A expression might provide a growth advantage to MSI CRC cells.


Assuntos
Neoplasias Colorretais , Mutação da Fase de Leitura , Instabilidade Genômica , Repetições de Microssatélites , Proteínas de Neoplasias , Degradação do RNAm Mediada por Códon sem Sentido , Fosfoproteínas , Proteínas de Ligação a RNA , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Perfilação da Expressão Gênica , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteômica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
9.
Int J Mol Sci ; 20(17)2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31454892

RESUMO

Microsatellite unstable (MSI) colorectal cancers (CRCs) are characterized by mutational inactivation of Transforming Growth Factor Beta Receptor Type 2 (TGFBR2). TGFBR2-deficient CRCs present altered target gene and protein expression. Such cellular alterations modulate the content of CRC-derived extracellular vesicles (EVs). EVs function as couriers of proteins, nucleic acids, and lipids in intercellular communication. At a qualitative level, we have previously shown that TGFBR2 deficiency causes overall alterations in the EV protein content. To deepen the basic understanding of altered protein dynamics, this work aimed to determine TGFBR2-dependent EV protein signatures in a quantitative manner. Using a stable isotope labeling with amino acids in cell culture (SILAC) approach for mass spectrometry-based quantification, 48 TGFBR2-regulated proteins were identified in MSI CRC-derived EVs. Overall, TGFBR2 deficiency caused upregulation of several EV proteins related to the extracellular matrix and nucleosome as well as downregulation of proteasome-associated proteins. The present study emphasizes the general overlap of proteins between EVs and their parental CRC cells but also highlights the impact of TGFBR2 deficiency on EV protein composition. From a clinical perspective, TGFBR2-regulated quantitative differences of protein expression in EVs might nominate novel biomarkers for liquid biopsy-based MSI typing in the future.


Assuntos
Bioensaio , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Vesículas Extracelulares/metabolismo , Instabilidade de Microssatélites , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Aminoácidos/metabolismo , Bioensaio/métodos , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Vesículas Extracelulares/ultraestrutura , Regulação Neoplásica da Expressão Gênica , Humanos , Marcação por Isótopo , Biossíntese de Proteínas , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Reprodutibilidade dos Testes
10.
Int J Cancer ; 143(1): 139-150, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29424427

RESUMO

Lynch syndrome is caused by germline mutations of DNA mismatch repair (MMR) genes. MMR deficiency has long been regarded as a secondary event in the pathogenesis of Lynch syndrome colorectal cancers. Recently, this concept has been challenged by the discovery of MMR-deficient crypt foci in the normal mucosa. We aimed to reconstruct colorectal carcinogenesis in Lynch syndrome by collecting molecular and histology evidence from Lynch syndrome adenomas and carcinomas. We determined the frequency of MMR deficiency in adenomas from Lynch syndrome mutation carriers by immunohistochemistry and by systematic literature analysis. To trace back the pathways of pathogenesis, histological growth patterns and mutational signatures were analyzed in Lynch syndrome colorectal cancers. Literature and immunohistochemistry analysis demonstrated MMR deficiency in 491 (76.7%) out of 640 adenomas (95% CI: 73.3% to 79.8%) from Lynch syndrome mutation carriers. Histologically normal MMR-deficient crypts were found directly adjacent to dysplastic adenoma tissue, proving their role as tumor precursors in Lynch syndrome. Accordingly, mutation signature analysis in Lynch colorectal cancers revealed that KRAS and APC mutations commonly occur after the onset of MMR deficiency. Tumors lacking evidence of polypous growth frequently presented with CTNNB1 and TP53 mutations. Our findings demonstrate that Lynch syndrome colorectal cancers can develop through three pathways, with MMR deficiency commonly representing an early and possibly initiating event. This underlines that targeting MMR-deficient cells by chemoprevention or vaccines against MMR deficiency-induced frameshift peptide neoantigens holds promise for tumor prevention in Lynch syndrome.


Assuntos
Adenoma/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais/genética , Enzimas Reparadoras do DNA/genética , Predisposição Genética para Doença/genética , Mutação , Proteína da Polipose Adenomatosa do Colo/genética , Reparo de Erro de Pareamento de DNA , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Modelos Genéticos , Proteínas Proto-Oncogênicas p21(ras)/genética , Análise de Sequência de DNA , Proteína Supressora de Tumor p53/genética , beta Catenina/genética
11.
IUBMB Life ; 69(12): 962-970, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29098769

RESUMO

Galectins, a class of lectins with specificity for ß-galactoside containing glycoconjugates, modulate several cellular processes that are involved in the control of normal cell growth, differentiation, cell-cell, and cell matrix interactions. Pathological alterations of the galectin expression pattern have been implicated in the development and progression of cancer. We therefore analyzed epigenetic mechanisms for control of galectin expression in 9 colorectal cancer (CRC) cell lines. Our data demonstrate that expression of galectins-1, -2, -7, -8, and -9 can be regulated by histone acetylation in CRC cell lines. In addition, the same set of galectins was also found to be modulated by DNA methylation. Of particular note, galectin-12 is silenced in all tested CRC cell lines but known to be re-expressed upon butyrate-induced differentiation and present in normal colonic mucosa. Loss of galectin-12 expression in undifferentiated CRC cells is associated with promoter hypermethylation and for the first time we provide detailed methylation analysis of the promoter region. In CRC tumor tissue, galectin-12 expression was downregulated in 66% of CRC tissue specimens as compared to adjacent normal tissue hinting to a possible tumor-suppressing function in CRC. © 2017 IUBMB Life, 69(12):962-970, 2017.


Assuntos
Adenocarcinoma/genética , Neoplasias Colorretais/genética , Epigênese Genética , Galectinas/genética , Histonas/metabolismo , Acetilação , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma/cirurgia , Adulto , Idoso , Antimetabólitos Antineoplásicos/farmacologia , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Estudos de Coortes , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/cirurgia , Metilação de DNA/efeitos dos fármacos , Decitabina , Regulação para Baixo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Galectinas/metabolismo , Histonas/genética , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
12.
Cell Commun Signal ; 15(1): 14, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28376875

RESUMO

BACKGROUND: Colorectal cancers (CRCs) that lack DNA mismatch repair function exhibit the microsatellite unstable (MSI) phenotype and are characterized by the accumulation of frameshift mutations at short repetitive DNA sequences (microsatellites). These tumors recurrently show inactivating frameshift mutations in the tumor suppressor Transforming Growth Factor Beta Receptor Type 2 (TGFBR2) thereby abrogating downstream signaling. How altered TGFBR2 signaling affects exosome-mediated communication between MSI tumor cells and their environment has not been resolved. Here, we report on molecular alterations of exosomes shed by MSI cells and the biological response evoked in recipient cells. METHODS: Exosomes were isolated and characterized by electron microscopy, nanoparticle tracking, and western blot analysis. TGFBR2-dependent effects on the cargo and functions of exosomes were studied in a MSI CRC model cell line enabling reconstituted and inducible TGFBR2 expression and signaling. Microsatellite frameshift mutations in exosomal and cellular DNA were examined by PCR-based DNA fragment analysis and exosomal protein profiles were identified by mass spectrometry. Uptake of fluorescent-labeled exosomes by hepatoma recipient cells was monitored by confocal microscopy. TGFBR2-dependent exosomal effects on secreted cytokine levels of recipient cells were analyzed by Luminex technology and ELISA. RESULTS: Frameshift mutation patterns in microsatellite stretches of TGFBR2 and other MSI target genes were found to be reflected in the cargo of MSI CRC-derived exosomes. At the proteome level, reconstituted TGFBR2 expression and signaling uncovered two protein subsets exclusively occurring in exosomes derived from TGFBR2-deficient (14 proteins) or TGFBR2-proficient (five proteins) MSI donor cells. Uptake of these exosomes by recipient cells caused increased secretion (2-6 fold) of specific cytokines (Interleukin-4, Stem Cell Factor, Platelet-derived Growth Factor-B), depending on the TGFBR2 expression status of the tumor cell. CONCLUSION: Our results indicate that the coding MSI phenotype of DNA mismatch repair-deficient CRC cells is maintained in their exosomal DNA. Moreover, we uncovered that a recurrent MSI tumor driver mutation like TGFBR2 can reprogram the protein content of MSI cell-derived exosomes and in turn modulate the cytokine secretion profile of recipient cells. Apart from its diagnostic potential, these TGFBR2-dependent exosomal molecular and proteomic signatures might help to understand the signaling routes used by MSI tumors. Fricke et al. uncovered coding microsatellite instability-associated mutations of colorectal tumor driver genes like TGFBR2 in MSI tumor cellderived exosomes. Depending on the TGFBR2 expression status of their donor cells, shed exosomes show distinct proteomic signatures and promote altered cytokine secretion profiles in recipient cells.


Assuntos
Neoplasias Colorretais/metabolismo , Reparo de Erro de Pareamento de DNA , Exossomos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Quimiocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Exossomos/ultraestrutura , Mutação da Fase de Leitura/genética , Células HCT116 , Células Hep G2 , Humanos , Instabilidade de Microssatélites , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteoma/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II , Reprodutibilidade dos Testes
13.
Mol Cell Proteomics ; 13(12): 3446-56, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25225355

RESUMO

Activin receptor type II (ACVR2) is a member of the transforming growth factor type II receptor family and controls cell growth and differentiation, thereby acting as a tumor suppressor. ACVR2 inactivation is known to drive colorectal tumorigenesis. We used an ACVR2-deficient microsatellite unstable colon cancer cell line (HCT116) to set up a novel experimental design for comprehensive analysis of proteomic changes associated with such functional loss of a tumor suppressor. To this end we combined two existing technologies. First, the ACVR2 gene was reconstituted in an ACVR2-deficient colorectal cancer (CRC) cell line by means of recombinase-mediated cassette exchange, resulting in the generation of an inducible expression system that allowed the regulation of ACVR2 gene expression in a doxycycline-dependent manner. Functional expression in the induced cells was explicitly proven. Second, we used the methionine analog azidohomoalanine for metabolic labeling of newly synthesized proteins in our cell line model. Labeled proteins were tagged with biotin via a Click-iT chemistry approach enabling specific extraction of labeled proteins by streptavidin-coated beads. Tryptic on-bead digestion of captured proteins and subsequent ultra-high-performance LC coupled to LTQ Orbitrap XL mass spectrometry identified 513 proteins, with 25 of them differentially expressed between ACVR2-deficient and -proficient cells. Among these, several candidates that had already been linked to colorectal cancer or were known to play a key role in cell growth or apoptosis control were identified, proving the utility of the presented experimental approach. In principle, this strategy can be adapted to analyze any gene of interest and its effect on the cellular de novo proteome.


Assuntos
Receptores de Activinas Tipo II/genética , Regulação Neoplásica da Expressão Gênica , Proteoma/genética , Coloração e Rotulagem/métodos , Receptores de Activinas Tipo II/deficiência , Alanina/análogos & derivados , Alanina/metabolismo , Alanina/farmacologia , Alcinos/química , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Azidas/química , Biotina/química , Química Click , Reação de Cicloadição , Doxiciclina/farmacologia , Perfilação da Expressão Gênica , Teste de Complementação Genética , Células HCT116 , Humanos , Anotação de Sequência Molecular , Proteoma/metabolismo , Recombinases/genética , Recombinases/metabolismo , Transdução de Sinais , Estreptavidina/química
14.
Mol Carcinog ; 54(11): 1376-86, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25213383

RESUMO

Different DNA mismatch repair (MMR)-deficient mouse strains have been developed as models for the inherited cancer predisposing Lynch syndrome. It is completely unresolved, whether coding mononucleotide repeat (cMNR) gene mutations in these mice can contribute to intestinal tumorigenesis and whether MMR-deficient mice are a suitable molecular model of human microsatellite instability (MSI)-associated intestinal tumorigenesis. A proof-of-principle study was performed to identify mouse cMNR-harboring genes affected by insertion/deletion mutations in MSI murine intestinal tumors. Bioinformatic algorithms were developed to establish a database of mouse cMNR-harboring genes. A panel of five mouse noncoding mononucleotide markers was used for MSI classification of intestinal matched normal/tumor tissues from MMR-deficient (Mlh1(-/-) , Msh2(-/-) , Msh2(LoxP/LoxP) ) mice. cMNR frameshift mutations of candidate genes were determined by DNA fragment analysis. Murine MSI intestinal tumors but not normal tissues from MMR-deficient mice showed cMNR frameshift mutations in six candidate genes (Elavl3, Tmem107, Glis2, Sdccag1, Senp6, Rfc3). cMNRs of mouse Rfc3 and Elavl3 are conserved in type and length in their human orthologs that are known to be mutated in human MSI colorectal, endometrial and gastric cancer. We provide evidence for the utility of a mononucleotide marker panel for detection of MSI in murine tumors, the existence of cMNR instability in MSI murine tumors, the utility of mouse subspecies DNA for identification of polymorphic repeats, and repeat conservation among some orthologous human/mouse genes, two of them showing instability in human and mouse MSI intestinal tumors. MMR-deficient mice hence are a useful molecular model system for analyzing MSI intestinal carcinogenesis.


Assuntos
Pareamento Incorreto de Bases/genética , Reparo de Erro de Pareamento de DNA/genética , Mutação da Fase de Leitura/genética , Neoplasias Intestinais/genética , Repetições de Microssatélites/genética , Animais , Neoplasias Colorretais Hereditárias sem Polipose/genética , Proteínas de Ligação a DNA , Humanos , Camundongos , Instabilidade de Microssatélites
15.
IUBMB Life ; 67(3): 218-26, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25854316

RESUMO

High glucose consumption due to Warburg effect is one of the metabolic hallmarks of cancer. Consequently, glucose antimetabolites, such as 2-deoxy-glucose (2DG), can induce substantial growth inhibition of cancer cells. However, the inhibition of metabolic pathways is not the sole effect of 2DG on cancer cells. As mannose-mimetic molecule, 2DG is believed to interfere with normal glycosylation of proteins in cells. Here, we address how 2DG influences protein glycosylation in cancer cells and discuss possible implications of the consequences of this influence. In detail, six colorectal cancer cell lines were examined for alterations of protein glycosylation by measuring monosaccharide incorporation into cellular glycoproteins and cell surface glycosylation by lectin FACS. A significant increase in mannose incorporation was observed on treatment with 2DG (1 mM for 48 h), which was also reflected by an increased binding of the mannose-binding lectin Concanavalin A in FACS analysis. This phenomenon, which could be reversed by external addition of mannose, was not caused by 2DG-mediated mannosidase inhibition, as shown by pulse-chase experiments, arguing in favor of the hypothesis that 2DG directly influenced the incorporation of mannose. Increased mannose content was generally observed in cellular glycoproteins, including glycoproteins isolated from the plasma membrane fraction. Our results indicate that 2DG at low doses, which have only a limited metabolism-related effect on glycosylation, induces a strong increase in mannose incorporation into cellular glycoproteins. On the other hand, higher 2DG concentrations (10 and 20 mM) led to a significant decrease of absolute mannose incorporation accompanied by a dramatically reduced protein synthesis rate. 2DG-induced alterations of glycosylation may represent a novel mechanism potentially explaining the varied effects of 2DG on cancer cells. Moreover, 2DG treatment may open a path toward novel diagnostic and cancer therapeutic approaches, which specifically target altered glycoantigen structures induced by 2DG.


Assuntos
Desoxiglucose/farmacologia , Glicoproteínas/metabolismo , Manose/metabolismo , Animais , Linhagem Celular Tumoral/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Desoxiglucose/metabolismo , Relação Dose-Resposta a Droga , Glicosilação/efeitos dos fármacos , Células HCT116/efeitos dos fármacos , Células HCT116/metabolismo , Humanos , Lectinas/metabolismo , Proteínas de Membrana/metabolismo , Camundongos
16.
Proc Natl Acad Sci U S A ; 109(5): 1530-5, 2012 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-22307608

RESUMO

The loss of the epithelial architecture and cell polarity/differentiation is known to be important during the tumorigenic process. Here we demonstrate that the brush border protein Myosin Ia (MYO1A) is important for polarization and differentiation of colon cancer cells and is frequently inactivated in colorectal tumors by genetic and epigenetic mechanisms. MYO1A frame-shift mutations were observed in 32% (37 of 116) of the colorectal tumors with microsatellite instability analyzed, and evidence of promoter methylation was observed in a significant proportion of colon cancer cell lines and primary colorectal tumors. The loss of polarization/differentiation resulting from MYO1A inactivation is associated with higher tumor growth in soft agar and in a xenograft model. In addition, the progression of genetically and carcinogen-initiated intestinal tumors was significantly accelerated in Myo1a knockout mice compared with Myo1a wild-type animals. Moreover, MYO1A tumor expression was found to be an independent prognostic factor for colorectal cancer patients. Patients with low MYO1A tumor protein levels had significantly shorter disease-free and overall survival compared with patients with high tumoral MYO1A (logrank test P = 0.004 and P = 0.009, respectively). The median time-to-disease recurrence in patients with low MYO1A was 1 y, compared with >9 y in the group of patients with high MYO1A. These results identify MYO1A as a unique tumor-suppressor gene in colorectal cancer and demonstrate that the loss of structural brush border proteins involved in cell polarity are important for tumor development.


Assuntos
Genes Supressores de Tumor , Mucosa Intestinal/metabolismo , Microvilosidades/metabolismo , Miosina Tipo I/fisiologia , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Metilação de DNA , Humanos , Mutação , Miosina Tipo I/genética , Regiões Promotoras Genéticas
17.
J Natl Cancer Inst ; 116(6): 957-965, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38466935

RESUMO

BACKGROUND: Lynch syndrome is a hereditary cancer predisposition syndrome caused by germline mutations in DNA mismatch repair genes, which lead to high microsatellite instability and frameshift mutations at coding mononucleotide repeats in the genome. Recurrent frameshift mutations in these regions are thought to play a central role in the increased risk of various cancers, but no biomarkers are currently available for the surveillance of high microsatellite instability-associated cancers. METHODS: A frameshift mutation-based biomarker panel was developed and validated by targeted next-generation sequencing of supernatant DNA from cultured high microsatellite instability colorectal cancer cells. This panel supported selection of 122 frameshift mutation targets as potential biomarkers. This biomarker panel was then tested using matched tumor, adjacent normal tissue, and buffy coat samples (53 samples) and blood-derived cell-free DNA (cfDNA) (38 samples) obtained from 45 high microsatellite instability and mismatch repair-deficient patients. We also sequenced cfDNA from 84 healthy participants to assess background noise. RESULTS: Recurrent frameshift mutations at coding mononucleotide repeats were detectable not only in tumors but also in cfDNA from high microsatellite instability and mismatch repair-deficient patients, including a Lynch syndrome carrier, with a varying range of target detection (up to 85.2%), whereas they were virtually undetectable in healthy participants. Receiver operating characteristic curve analysis showed high sensitivity and specificity (area under the curve = 0.94) of the investigated panel. CONCLUSIONS: We demonstrated that frameshift mutations can be detected in cfDNA from high microsatellite instability and mismatch repair-deficient patients and asymptomatic carriers. The 122-target frameshift mutation panel described here has promise as a tool for improved surveillance of high microsatellite instability and mismatch repair-deficient patients, with the potential to reduce the frequency of invasive screening methods for this high-cancer-risk cohort.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais Hereditárias sem Polipose , Mutação da Fase de Leitura , Instabilidade de Microssatélites , Humanos , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/sangue , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Reparo de Erro de Pareamento de DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala , Curva ROC , Estudos de Casos e Controles , Sensibilidade e Especificidade
18.
Int J Cancer ; 132(8): 1790-9, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23002058

RESUMO

Brush border Myosin Ia (MYO1A) has been shown to be frequently mutated in colorectal tumors with microsatellite instability (MSI) and to have tumor suppressor activity in intestinal tumors. Here, we investigated the frequency of frameshift mutations in the A8 microsatellite in exon 28 of MYO1A in MSI gastric and endometrial tumors and found a high mutation rate in gastric (22/47; 46.8%) but not endometrial (3/48; 6.2%) tumors. Using a regression model, we show that MYO1A mutations are likely to confer a growth advantage to gastric, but not endometrial tumors. The mutant MYO1A(7A) protein was shown to lose its membrane localization in gastric cancer cells and a cycloheximide-chase assay demonstrated that the mutant MYO1A(7A) protein has reduced stability compared to the wild type MYO1A. Frequent MYO1A promoter hypermethylation was also found in gastric tumors. Promoter methylation negatively correlates with MYO1A mRNA expression in a series of 58 non-MSI gastric primary tumors (Pearson's r = -0.46; p = 0.0003) but not in a cohort of 54 non-MSI endometrial tumors and treatment of gastric cancer cells showing high MYO1A promoter methylation with the demethylating agent 5-aza-2'-deoxycytidine, resulted in a significant increase of MYO1A mRNA levels. We found that normal gastric epithelial cells, but not normal endometrial cells, express high levels of MYO1A. Therefore, when considered together, our findings suggest that MYO1A has tumor suppressor activity in the normal gastric epithelium but not in the normal endometrium and inactivation of MYO1A either genetically or epigenetically may confer gastric epithelial cells a growth advantage.


Assuntos
Neoplasias do Endométrio/genética , Microvilosidades/metabolismo , Cadeias Pesadas de Miosina/genética , Miosina Tipo I/genética , Neoplasias Gástricas/genética , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Sequência de Bases , Western Blotting , Metilação de DNA , Primers do DNA , Decitabina , Neoplasias do Endométrio/patologia , Feminino , Humanos , Microscopia Confocal , Mutação , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Gástricas/patologia
19.
Technol Health Care ; 31(4): 1555-1566, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334641

RESUMO

BACKGROUND: The clinical performance of medical devices is becoming increasingly important for the requirements of modern development processes and the associated regulations. However, the evidence for this performance can often only be obtained very late in the development process via clinical trials or studies. OBJECTIVE: The purpose of the presented work is to show that the simulation of bone-implant systems has advanced in various aspects, including cloud-based execution, Virtual Clinical Trials, and material modeling towards a point where and widespread utilization in healthcare for procedure planning and enhancing practices seems feasible. But this will only hold true if the virtual cohort data build from clinical Computer Tomography data are collected and analysed with care. METHODS: An overview of the principal steps necessary to perform Finite Element Method based structural mechanical simulations of bone-implant systems based on clinical imaging data is presented. Since these data form the baseline for virtual cohort construction, we present an enhancement method to make them more accurate and reliable. RESULTS: The findings of our work comprise the initial step towards a virtual cohort for the evaluation of proximal femur implants. In addition, results of our proposed enhancement methodology for clinical Computer Tomography data that demonstrate the necessity for the usage of multiple image reconstructions are presented. CONCLUSION: Simulation methodologies and pipelines nowadays are mature and have turnaround times that allow for a day-to-day use. However, small changes in the imaging and the preprocessing of data can have a significant impact on the obtaind results. Consequently, first steps towards virtual clinical trials, like collecting bone samples, are done, but the reliability of the input data remains subject to further research and development.


Assuntos
Fêmur , Processamento de Imagem Assistida por Computador , Humanos , Simulação por Computador , Análise de Elementos Finitos , Reprodutibilidade dos Testes
20.
Med Genet ; 35(4): 259-268, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38835740

RESUMO

Genetic predisposition is one of the major measurable cancer risk factors. Affected patients have an enhanced risk for cancer and require life-long surveillance. However, current screening measures are mostly invasive and only available for certain tumor types. Particularly in hereditary cancer syndromes, liquid biopsy, in addition to monitoring therapy response and assessing minimal residual disease, holds great potential for surveillance at the precancerous stage and potentially even diagnostics. Exploring these options and future clinical translation could help reduce cancer risk and mortality in high-risk individuals and enhance patients' adherence to tailored surveillance protocols.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA