Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Inflammopharmacology ; 31(2): 799-812, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36943539

RESUMO

Topical imiquimod based creams are indicated as immune stimulants for papillomas and various skin neoplasms. Imiquimod is considered a TLR7 ligand. These creams are also used in research to induce skin inflammation in mice as a model for psoriasis. We observed that this inflammatory response was not strictly imiquimod dependent and we set out to establish which components drive the proinflammatory effects. To this end, we examined the induction response in a BALB/cJRj mouse model, in which 50 mg of cream is applied to 2 cm2 of skin (125 mg/kg imiquimod-5% W/V, and/or 625 mg/kg isostearic acid-25% W/V). Comparing cream formulations containing isostearic acid, imiquimod and the combination, we observed that isostearic acid causes skin inflammation within 2 days, whereas imiquimod requires up to 5 days for initial signs. Isostearic acid activated an inflammasome response, stimulated release of proinflammatory cytokines and upregulated the IL-23/17 axis. Animals treated with isostearic acid had enlarged livers (+ 40% weight), which was not observed with imiquimod alone. Imiquimod was readily metabolized and cleared from plasma and liver, but was maintained at high levels in the skin throughout the body (200 mM at area of application; 200 µM in untreated skin). Imiquimod application was associated with splenomegaly, cytokine induction/release and initial body weight loss over 3 days. Despite high imiquimod skin levels throughout the animal, inflammation was only apparent in the treated areas and was less severe than in isostearic acid groups. As the concentrations in these areas are well above the 10 µM required for TLR7 responses in vitro, there is an implication that skin inflammation following imiquimod is due to effects other than TLR7 agonism (e.g., adenosine receptor agonism). In brain, isostearic caused no major changes in cytokine expression while imiquimod alone sightly stimulated expression of IL-1ß and CCL9. However, the combination of both caused brain induction of CCL3, -9, CXCL10, -13, IL-1ß and TNFα. The implication of these data is that isostearic acid facilitates the entry of imiquimod or peripherally secreted cytokines into the brain. Our data suggest that psoriaform skin responses in mice are more driven by isostearic acid, than generally reported and that the dose and route used in the model, leads to profound systemic effects, which may complicate the interpretation of drug effects in this model.


Assuntos
Dermatite , Receptor 7 Toll-Like , Animais , Camundongos , Imiquimode/metabolismo , Receptor 7 Toll-Like/metabolismo , Pele/metabolismo , Citocinas/metabolismo , Dermatite/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
2.
Inflammopharmacology ; 31(3): 1223-1239, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37004600

RESUMO

Dimethyl fumarate (DMF) is approved as a treatment for multiple sclerosis (MS), however, its mode of action remains unclear. One hypothesis proposes that Michael addition to thiols by DMF, notably glutathione is immunomodulatory. The alternative proposes that monomethyl fumarate (MMF), the hydrolysis product of DMF, is a ligand to the fatty acid receptor GPR109A found in the lysosomes of immune cells. We prepared esters of MMF and macrolides derived from azithromycin, which were tropic to immune cells by virtue of lysosomal trapping. We tested the effects of these substances in an assay of response to Lipopolysaccharide (LPS) in freshly isolated human peripheral blood mononuclear cells (PBMCs). In this system, we observed that the 4'' ester of MMF (compound 2 and 3) reduced levels of Interleukins (IL)-1ß, IL-12 and tumor necrosis factor alpha (TNFα) significantly at a concentration of 1 µM, while DMF required about 25 µM for the same effect. The 2' esters of MMF (compound 1 and 2) were, like MMF itself, inactive in vitro. The 4'' ester formed glutathione conjugates rapidly while the 2' conjugates did not react with thiols but did hydrolyze slowly to release MMF in these cells. We then tested the substances in vivo using the imiquimod/isostearate model of psoriasis where the 2' ester was the most active at 0.06-0.12 mg/kg (approximately 0.1 µmol/kg), improving skin score, body weight and cytokine levels (TNFα, IL-17A, IL-17F, IL-6, IL-1ß, NLRP3 and IL-23A). In contrast, the thiol reactive 4'' ester was less active than the 2' ester while DMF was ca. 300-fold less active. The thiol reactive 4'' ester was not easily recovered from either plasma or organs while the 2' ester exhibited conventional uptake and elimination. The 2' ester also reduced levels of IL-6 in acute monosodium urate (MSU) induced inflammation. These data suggest that mechanisms that are relevant in vivo center on the release of MMF. Given that GPR109A is localized to the lysosome, and that lysosomal trapping increases 2' ester activity by > 300 fold, these data suggest that GPR109A may be the main target in vivo. In contrast, the effects associated with glutathione (GSH) conjugation in vitro are unlikely to be as effective in vivo due to the much lower dose in use which cannot titrate the more concentrated thiols. These data support the case for GPR109A modulation in autoimmune diseases.


Assuntos
Ésteres , Leucócitos Mononucleares , Humanos , Ésteres/farmacologia , Interleucina-6 , Fator de Necrose Tumoral alfa , Fumarato de Dimetilo/farmacologia , Glutationa
3.
Sci Rep ; 11(1): 11899, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099796

RESUMO

The pandemic caused by SARS-CoV-2 resulted in increasing demands for diagnostic tests, leading to a shortage of recommended testing materials and reagents. This study reports on the performance of self-sampled alternative swabbing material (ordinary Q-tips tested against flocked swab and rayon swab), of reagents for classical RNA extraction (phenol/guanidine-based protocol against a commercial kit), and of intercalating dye-based one-step quantitative reverse transcription real-time PCRs (RT-qPCR) compared against the gold standard hydrolysis probe-based assays for SARS-CoV-2 detection. The study found sampling with Q-tips, RNA extraction with classical protocol and intercalating dye-based RT-qPCR as a reliable and comparably sensitive strategy for detection of SARS-CoV-2-particularly valuable in the current period with a resurgent and dramatic increase in SARS-CoV-2 infections and growing shortage of diagnostic materials especially for regions limited in resources.


Assuntos
Teste para COVID-19 , COVID-19/diagnóstico , RNA Viral/genética , SARS-CoV-2/patogenicidade , Manejo de Espécimes , Teste para COVID-19/métodos , Humanos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Transcrição Reversa/fisiologia , Manejo de Espécimes/métodos , Fatores de Tempo
5.
PLoS One ; 8(7): e59395, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23869202

RESUMO

BACKGROUND: The psychotomimetic effects of N-methyl-D-aspartate (NMDA) receptor antagonists in healthy humans and their tendency to aggravate psychotic symptoms in schizophrenic patients have promoted the notion of altered glutamatergic neurotransmission in the pathogenesis of schizophrenia. METHODS: The NMDA-receptor antagonist MK-801 was chronically administered to rats (0.02 mg/kg intraperitoneally for 14 days). In one subgroup the antipsychotic haloperidol (1 mg/kg) was employed as a rescue therapy. Glutamate distribution and 3-NT (3-nitrotyrosine) as a marker of oxidative stress were assessed by immunohistochemistry in tissue sections. In parallel, the effects of MK-801 and haloperidol were investigated in primary embryonal hippocampal cell cultures from rats. RESULTS: Chronic NMDA-R antagonism led to a marked increase of intracellular glutamate in the hippocampus (126.1 +/- 10.4% S.E.M of control; p=0.037), while 3-NT staining intensity remained unaltered. No differences were observed in extrahippocampal brain regions. Essentially these findings could be reproduced in vitro. CONCLUSION: The combined in vivo and in vitro strategy allowed us to assess the implications of disturbed glutamate metabolism for the occurrence of oxidative stress and to investigate the effects of antipsychotics. Our data suggest that oxidative stress plays a minor role in this model than previously suggested. The same applies to apoptosis. Moreover, the effect of haloperidol seems to be mediated through yet unidentified mechanisms, unrelated to D2-antagonism. These convergent lines of evidence indicate that further research should be focused on the glutamatergic system and that our animal model may provide a tool to explore the biology of schizophrenia.


Assuntos
Antipsicóticos/farmacologia , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/metabolismo , Haloperidol/farmacologia , Hipocampo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Células Cultivadas , Hipocampo/metabolismo , Masculino , Ratos , Ratos Long-Evans , Espécies Reativas de Oxigênio/metabolismo , Esquizofrenia/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
6.
PLoS One ; 7(2): e30554, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22347384

RESUMO

Creatine has been shown to be neuroprotective in aging, neurodegenerative conditions and brain injury. As a common molecular background, oxidative stress and disturbed cellular energy homeostasis are key aspects in these conditions. Moreover, in a recent report we could demonstrate a life-enhancing and health-promoting potential of creatine in rodents, mainly due to its neuroprotective action. In order to investigate the underlying pharmacology mediating these mainly neuroprotective properties of creatine, cultured primary embryonal hippocampal and cortical cells were challenged with glutamate or H(2)O(2). In good agreement with our in vivo data, creatine mediated a direct effect on the bioenergetic balance, leading to an enhanced cellular energy charge, thereby acting as a neuroprotectant. Moreover, creatine effectively antagonized the H(2)O(2)-induced ATP depletion and the excitotoxic response towards glutamate, while not directly acting as an antioxidant. Additionally, creatine mediated a direct inhibitory action on the NMDA receptor-mediated calcium response, which initiates the excitotoxic cascade. Even excessive concentrations of creatine had no neurotoxic effects, so that high-dose creatine supplementation as a health-promoting agent in specific pathological situations or as a primary prophylactic compound in risk populations seems feasible. In conclusion, we were able to demonstrate that the protective potential of creatine was primarily mediated by its impact on cellular energy metabolism and NMDA receptor function, along with reduced glutamate spillover, oxidative stress and subsequent excitotoxicity.


Assuntos
Creatina/farmacologia , Metabolismo Energético/efeitos dos fármacos , Doenças Neurodegenerativas/prevenção & controle , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Animais , Células Cultivadas , Córtex Cerebral , Ácido Glutâmico , Hipocampo/citologia , Peróxido de Hidrogênio , Camundongos , Fármacos Neuroprotetores , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA