Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(30): 16889-16898, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37482957

RESUMO

Self-replicating molecules provide a simple approach for investigating fundamental processes in scenarios of the emergence of life. Although homochirality is an important aspect of life and of how it emerged, the effects of chirality on self-replicators have received only little attention so far. Here, we report several self-assembled self-replicators with enantioselectivity that emerge spontaneously and grow only from enantiopure material. These require a relatively small number of chiral units in the replicators (down to eight) and in the precursors (down to a single chiral unit), compared to the only other enantioselective replicator reported previously. One replicator was found to incorporate material of its own handedness with high fidelity when provided with a racemic mixture of precursors, thus sorting (L)- and (D)-precursors into (L)- and (D)-replicators. Systematic studies reveal that the presence or absence of enantioselectivity depends on structural features (ring size of the replicator) that appear to impose constraints on its supramolecular organization. This work reveals new aspects of the little researched interplay between chirality and self-replication and represents another step toward the de novo synthesis of life.

2.
Chem Soc Rev ; 51(4): 1206-1211, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35073391

RESUMO

For over 25 years the chemistry community has puzzled over the mechanism of the Soai reaction, a fascinating chemical process which achieves chiral symmetry breaking by combining autocatalysis with asymmetric amplification. In 2020, the groups of Denmark and Trapp each made a proposal, based on extensive experimental work, on what is the catalytic species there: either a tetrameric product alkoxide aggregate ("SMS tetramer") or a product-substrate dimer ("hemiacetal"). These models seemingly oppose and exclude each other; however, they might also be both valid since the studies were conducted on different substrates which are not necessarily equivalent. This is shown in this Viewpoint by an in-depth comparison of the two studies and of data from earlier reports, which opens up to a discussion on this scenario's far-reaching implications on the fundamental understanding of asymmetry-amplifying autocatalysis.


Assuntos
Polímeros , Catálise , Estereoisomerismo
3.
Molecules ; 27(12)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35744906

RESUMO

Phenomena related to asymmetric amplification are considered to be key to understanding the emergence of homochirality in life. In asymmetric catalysis, theoretical and experimental models have been studied to understand such chiral amplification, in particular based on non-linear effects. Three decades after the theoretical demonstration that a chiral catalyst, when not enantiopure, could be more enantioselective than its enantiopure counterpart, we show here a new experimental example of nonlinear hyperpositive effect. We report here our investigations in the enantioselective zinc-catalyzed alkylation of benzaldehyde with N-pyrrolidinyl norephedrine as partially resolved chiral ligand, which shows a significant hyperpositive non-linear effect. A study of the underlying mechanism was conducted, which allows us to confirm a mechanism that implies a monomeric and a dimeric complex both catalyzing the reaction at a steady state and giving different enantioselectivities.


Assuntos
Compostos Organometálicos , Alquilação , Catálise , Fenilpropanolamina , Estereoisomerismo
4.
Chirality ; 32(10): 1250-1256, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32691914

RESUMO

Asymmetric amplification is a phenomenon that is believed to play a key role in the emergence of homochirality in life. In asymmetric catalysis, theoretical and experimental models have been investigated to provide an understanding of how chiral amplification is possible, in particular based on non-linear effects. Interestingly, it has been proposed a quarter century ago that chiral catalysts, when not enantiopure might even be more enantioselective than their enantiopure counterparts. We show here that such hyperpositive non-linear effect in asymmetric catalysis is indeed possible. An in-depth study into the underlying mechanism was carried out, and the scheme we derive differs from the previous proposed models.

5.
Chem Sci ; 11(46): 12453-12463, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34094450

RESUMO

The chiral ligand N-methylephedrine (NME) was found to catalyse the addition of dimethylzinc to benzaldehyde in an enantiodivergent way, with a monomeric and a homochiral dimeric complex both catalysing the reaction at a steady state and giving opposite product enantiomers. A change in the sign of the enantiomeric product was thus possible by simply varying the catalyst loading or the ligand ee, giving rise to an enantiodivergent non-linear effect. Simulations using a mathematical model confirmed the possibility of such behaviour and showed that this can lead to situations where a reaction gives racemic products, although the system is composed only of highly enantioselective individual catalysts. Furthermore, depending on the dimer's degree of participation in the catalytic conversion, enantiodivergence may or may not be observed experimentally, which raises questions about the possibility of enantiodivergence in other monomer/dimer-catalysed systems. Simulations of the reaction kinetics showed that the observed kinetic constant k obs is highly dependent on user-controlled parameters, such as the catalyst concentration and the ligand ee, and may thus vary in a distinct way from one experimental setup to another. This unusual dependency of k obs allowed us to confirm that a previously observed U-shaped catalyst order vs. catalyst loading-plot is linked to the simultaneous catalytic activity of both monomeric and dimeric complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA