Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Biol ; 18(8): e3000836, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32804946

RESUMO

Pleiotropy-when a single mutation affects multiple traits-is a controversial topic with far-reaching implications. Pleiotropy plays a central role in debates about how complex traits evolve and whether biological systems are modular or are organized such that every gene has the potential to affect many traits. Pleiotropy is also critical to initiatives in evolutionary medicine that seek to trap infectious microbes or tumors by selecting for mutations that encourage growth in some conditions at the expense of others. Research in these fields, and others, would benefit from understanding the extent to which pleiotropy reflects inherent relationships among phenotypes that correlate no matter the perturbation (vertical pleiotropy). Alternatively, pleiotropy may result from genetic changes that impose correlations between otherwise independent traits (horizontal pleiotropy). We distinguish these possibilities by using clonal populations of yeast cells to quantify the inherent relationships between single-cell morphological features. Then, we demonstrate how often these relationships underlie vertical pleiotropy and how often these relationships are modified by genetic variants (quantitative trait loci [QTL]) acting via horizontal pleiotropy. Our comprehensive screen measures thousands of pairwise trait correlations across hundreds of thousands of yeast cells and reveals ample evidence of both vertical and horizontal pleiotropy. Additionally, we observe that the correlations between traits can change with the environment, genetic background, and cell-cycle position. These changing dependencies suggest a nuanced view of pleiotropy: biological systems demonstrate limited pleiotropy in any given context, but across contexts (e.g., across diverse environments and genetic backgrounds) each genetic change has the potential to influence a larger number of traits. Our method suggests that exploiting pleiotropy for applications in evolutionary medicine would benefit from focusing on traits with correlations that are less dependent on context.


Assuntos
Pleiotropia Genética , Modelos Genéticos , Herança Multifatorial , Locos de Características Quantitativas , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Evolução Biológica , Ciclo Celular/genética , Células Clonais , Variação Genética , Ensaios de Triagem em Larga Escala , Mutação , Fenótipo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Célula Única
2.
PLoS Biol ; 14(10): e2000465, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27768682

RESUMO

The protein-folding chaperone Hsp90 has been proposed to buffer the phenotypic effects of mutations. The potential for Hsp90 and other putative buffers to increase robustness to mutation has had major impact on disease models, quantitative genetics, and evolutionary theory. But Hsp90 sometimes contradicts expectations for a buffer by potentiating rapid phenotypic changes that would otherwise not occur. Here, we quantify Hsp90's ability to buffer or potentiate (i.e., diminish or enhance) the effects of genetic variation on single-cell morphological features in budding yeast. We corroborate reports that Hsp90 tends to buffer the effects of standing genetic variation in natural populations. However, we demonstrate that Hsp90 tends to have the opposite effect on genetic variation that has experienced reduced selection pressure. Specifically, Hsp90 tends to enhance, rather than diminish, the effects of spontaneous mutations and recombinations. This result implies that Hsp90 does not make phenotypes more robust to the effects of genetic perturbation. Instead, natural selection preferentially allows buffered alleles to persist and thereby creates the false impression that Hsp90 confers greater robustness.


Assuntos
Variação Genética , Proteínas de Choque Térmico HSP90/metabolismo , Seleção Genética , Epistasia Genética , Mutação , Recombinação Genética , Saccharomyces cerevisiae/genética
3.
Proc Natl Acad Sci U S A ; 108(2): 680-5, 2011 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-21187411

RESUMO

Evolving lineages face a constant intracellular threat: most new coding sequence mutations destabilize the folding of the encoded protein. Misfolded proteins form insoluble aggregates and are hypothesized to be intrinsically cytotoxic. Here, we experimentally isolate a fitness cost caused by toxicity of misfolded proteins. We exclude other costs of protein misfolding, such as loss of functional protein or attenuation of growth-limiting protein synthesis resources, by comparing growth rates of budding yeast expressing folded or misfolded variants of a gratuitous protein, YFP, at equal levels. We quantify a fitness cost that increases with misfolded protein abundance, up to as much as a 3.2% growth rate reduction when misfolded YFP represents less than 0.1% of total cellular protein. Comparable experiments on variants of the yeast gene orotidine-5'-phosphate decarboxylase (URA3) produce similar results. Quantitative proteomic measurements reveal that, within the cell, misfolded YFP induces coordinated synthesis of interacting cytosolic chaperone proteins in the absence of a wider stress response, providing evidence for an evolved modular response to misfolded proteins in the cytosol. These results underscore the distinct and evolutionarily relevant molecular threat of protein misfolding, independent of protein function. Assuming that most misfolded proteins impose similar costs, yeast cells express almost all proteins at steady-state levels sufficient to expose their encoding genes to selection against misfolding, lending credibility to the recent suggestion that such selection imposes a global constraint on molecular evolution.


Assuntos
Citosol/química , Proteínas Fúngicas/química , Proteínas de Bactérias/química , Citosol/metabolismo , Evolução Molecular , Temperatura Alta , Proteínas Luminescentes/química , Chaperonas Moleculares/química , Desnaturação Proteica , Dobramento de Proteína , Proteínas/química , Proteômica/métodos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Transcrição Gênica
4.
PLoS One ; 8(9): e75320, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086506

RESUMO

Countless studies monitor the growth rate of microbial populations as a measure of fitness. However, an enormous gap separates growth-rate differences measurable in the laboratory from those that natural selection can distinguish efficiently. Taking advantage of the recent discovery that transcript and protein levels in budding yeast closely track growth rate, we explore the possibility that growth rate can be more sensitively inferred by monitoring the proteomic response to growth, rather than growth itself. We find a set of proteins whose levels, in aggregate, enable prediction of growth rate to a higher precision than direct measurements. However, we find little overlap between these proteins and those that closely track growth rate in other studies. These results suggest that, in yeast, the pathways that set the pace of cell division can differ depending on the growth-altering stimulus. Still, with proper validation, protein measurements can provide high-precision growth estimates that allow extension of phenotypic growth-based assays closer to the limits of evolutionary selection.


Assuntos
Proteínas Fúngicas/metabolismo , Aptidão Genética/fisiologia , Saccharomycetales/crescimento & desenvolvimento , Transcriptoma/fisiologia , Funções Verossimilhança , Proteômica , Saccharomycetales/metabolismo , Seleção Genética , Transcriptoma/genética
5.
Science ; 331(6017): 555-61, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21292972

RESUMO

We describe the draft genome of the microcrustacean Daphnia pulex, which is only 200 megabases and contains at least 30,907 genes. The high gene count is a consequence of an elevated rate of gene duplication resulting in tandem gene clusters. More than a third of Daphnia's genes have no detectable homologs in any other available proteome, and the most amplified gene families are specific to the Daphnia lineage. The coexpansion of gene families interacting within metabolic pathways suggests that the maintenance of duplicated genes is not random, and the analysis of gene expression under different environmental conditions reveals that numerous paralogs acquire divergent expression patterns soon after duplication. Daphnia-specific genes, including many additional loci within sequenced regions that are otherwise devoid of annotations, are the most responsive genes to ecological challenges.


Assuntos
Daphnia/genética , Ecossistema , Genoma , Adaptação Fisiológica , Sequência de Aminoácidos , Animais , Sequência de Bases , Mapeamento Cromossômico , Daphnia/fisiologia , Meio Ambiente , Evolução Molecular , Conversão Gênica , Duplicação Gênica , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genes , Genes Duplicados , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Dados de Sequência Molecular , Família Multigênica , Filogenia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA