Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Membr Biol ; 250(2): 171-182, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28083649

RESUMO

Although increased dietary fructose consumption is associated with metabolic impairments, the mechanisms and regulation of intestinal fructose absorption are poorly understood. GLUT5 is considered to be the main intestinal fructose transporter. Other GLUT family members, such as GLUT7 and GLUT9 are also expressed in the intestine and were shown to transport fructose and glucose. A conserved isoleucine-containing motif (NXI) was proposed to be essential for fructose transport capacity of GLUT7 and GLUT9 but also of GLUT2 and GLUT5. In assessing whether human GLUT2, GLUT5, GLUT7, and GLUT9 are indeed fructose transporters, we expressed these proteins in Xenopus laevis oocytes. Stably transfected NIH-3T3 fibroblasts were used as second expression system. In proving the role of the NXI motif, variants p.I322V of GLUT2 and p.I296V of GLUT5 were tested as well. Sugar transport was measured by radiotracer flux assays or by metabolomics analysis of cell extracts by GC-MS. Fructose and glucose uptakes by GLUT7 were not increased in both expression systems. In search for the physiological substrate of GLUT7, cells overexpressing the protein were exposed to various metabolite mixtures, but we failed to identify a substrate. Although urate transport by GLUT9 could be shown, neither fructose nor glucose transport was detectable. Fructose uptake was decreased by the GLUT2 p.I322V variant, but remained unaffected in the p.I296V GLUT5 variant. Thus, our work does not find evidence that GLUT7 or GLUT9 transport fructose or glucose or that the isoleucine residue determines fructose specificity. Rather, the physiological substrate of GLUT7 awaits to be discovered.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Animais , Transporte Biológico/genética , Transporte Biológico/fisiologia , Frutose/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Humanos , Camundongos , Microscopia de Fluorescência , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Células NIH 3T3 , Oócitos/metabolismo , Xenopus laevis
2.
Mol Nutr Food Res ; 58(9): 1795-808, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25074384

RESUMO

SCOPE: There is a growing interest in food constituents that could reduce intestinal glucose absorption to prevent overshooting plasma glucose and insulin levels in patients with prediabetes and diabetes mellitus type 2. METHODS AND RESULTS: We here demonstrate that an extract and individual polyphenols from apple diminish sodium-coupled glucose transporter 1 (SGLT1) mediated glucose uptake in vitro and in vivo. Inhibition of transport of sugars by SGLT1 was shown in Xenopus oocytes and in mice jejunal segments. Strongest inhibition was observed for phlorizin with IC50 values for transport inhibition of 0.46 ± 0.19 and 4.1 ± 0.6 µM in oocytes and intestinal segments, respectively. An oral glucose tolerance test performed in volunteers with prior administration of the apple extract reduced venous blood glucose and plasma insulin levels, similar to findings obtained in C57BL/6N mice. Analysis of human urine samples revealed that the extract increased modestly renal glucose loss that is most likely a result of inhibition of renal glucose reabsorption by phloretin derivatives found in plasma of the volunteers. CONCLUSION: Although the apple extract substantially decreased intestinal glucose absorption in all test systems, the finding that there are systemic effects that relate to inhibition of glucose transport processes beyond the intestine addresses safety issues that need further exploitation.


Assuntos
Glicemia/metabolismo , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Transportador 1 de Glucose-Sódio/antagonistas & inibidores , Adulto , Animais , Feminino , Glicosúria/tratamento farmacológico , Humanos , Masculino , Malus , Camundongos Endogâmicos C57BL , Oócitos/efeitos dos fármacos , Florizina/farmacologia , Polifenóis/análise , Período Pós-Prandial/efeitos dos fármacos , Transportador 1 de Glucose-Sódio/genética , Transportador 1 de Glucose-Sódio/metabolismo , Xenopus laevis , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA