Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microsc Microanal ; 29(3): 1124-1136, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37749700

RESUMO

Atom probe tomography (APT) is a powerful three-dimensional nanoanalyzing microscopy technique considered key in modern materials science. However, progress in the spatial reconstruction of APT data has been rather limited since the first implementation of the protocol proposed by Bas et al. in 1995. This paper proposes a simple semianalytical approach to reconstruct multilayered structures, i.e., two or more different compounds stacked perpendicular to the analysis direction. Using a field evaporation model, the general dynamic evolution of parameters involved in the reconstruction of this type of structure is estimated. Some experimental reconstructions of different structures through the implementation of this method that dynamically accommodates variations in the tomographic reconstruction parameters are presented. It is shown both experimentally and theoretically that the depth accuracy of reconstructed APT images is improved using this method. The method requires few parameters in order to be easily usable and substantially improves atom probe tomographic reconstructions of multilayered structures.

2.
Microsc Microanal ; 18(5): 953-63, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23058657

RESUMO

The ability to accurately reconstruct original spatial positions of field-evaporated ions emitted from a surface is fundamental to the success of atom probe tomography. As such, a clear understanding of the evolution of specimen shape and the resultant ions' trajectories during field evaporation plays an important role in improving reconstruction accuracy. To further this understanding, field-evaporation simulations of a bilayer specimen composed of two materials having an evaporation field difference of 20% were performed. The simulated field-evaporation patterns qualitatively compare favorably with experimental data, which provides confidence in the accuracy of specimen shapes predicted by the simulation. Correlations of known original atom positions with detector hit positions as a function of lateral detector position and evaporated depth were derived from the simulation. These correlations are contrasted with the current state-of-the-art reconstruction method thus outlining limitations of the current methodology. A pair of transformations are defined that take into account field-evaporated specimen shapes, and the resulting radial magnifications, to relate recorded ion positions in detector space to reconstructed atomic positions in specimen space. This novel process, when applied to simulated data, results in approximately a factor of 2 improvement in accuracy for reconstructions of interfaces with unequal fields (most general interfaces). This method is not constrained by the fundamental assumption of a hemispherical specimen shape.

3.
Ultramicroscopy ; 132: 19-30, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23607993

RESUMO

Atom probe tomography stands out from other materials characterisation techniques mostly due to its capacity to map individual atoms in three-dimensions with high spatial resolution. The methods used to transform raw detector data into a three-dimensional reconstruction have, comparatively to other aspects of the technique, evolved relatively little since their inception more than 15 years ago. However, due to the importance of the fidelity of the data, this topic is currently attracting a lot of interest within the atom probe community. In this review we cover: (1) the main aspects of the image projection, (2) the methods used to build tomographic reconstructions, (3) the intrinsic limitations of these methods, and (4) future potential directions to improve the integrity of atom probe tomograms.

4.
Ultramicroscopy ; 132: 107-13, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23294557

RESUMO

We electrostatically model a local electrode atom probe microscope using the commercial software IES LORENTZ 2D v9.0 to investigate factors affecting the reconstruction parameters. We find strong dependences on the specimen geometry and voltage, and moderate dependences on the tip-aperture separation, which confirm that the current approach to atom probe reconstruction overlooks too many factors. Based on our data, which are in excellent agreement with known trends and experimental results, we derive a set of empirical relations which predict the values of the reconstruction parameters. These may be used to advance current reconstruction protocols by enabling the parameters to be adjusted as the specimen geometry changes.

5.
Microsc Microanal ; 13(6): 437-47, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18001510

RESUMO

A real-space technique for finding structural information in atom probe tomographs, spatial distribution maps (SDM), is described. The mechanics of the technique are explained, and it is then applied to some test cases. Many applications of SDM in atom probe tomography are illustrated with examples including finding crystal lattices, correcting lattice strains in reconstructed images, quantifying trajectory aberrations, quantifying spatial resolution, quantifying chemical ordering, dark-field imaging, determining orientation relationships, extracting radial distribution functions, and measuring ion detection efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA