Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 81(14): 2914-2928.e7, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34107307

RESUMO

Molecular chaperones assist with protein folding by interacting with nascent polypeptide chains (NCs) during translation. Whether the ribosome can sense chaperone defects and, in response, abort translation of misfolding NCs has not yet been explored. Here we used quantitative proteomics to investigate the ribosome-associated chaperone network in E. coli and the consequences of its dysfunction. Trigger factor and the DnaK (Hsp70) system are the major NC-binding chaperones. HtpG (Hsp90), GroEL, and ClpB contribute increasingly when DnaK is deficient. Surprisingly, misfolding because of defects in co-translational chaperone function or amino acid analog incorporation results in recruitment of the non-canonical release factor RF3. RF3 recognizes aberrant NCs and then moves to the peptidyltransferase site to cooperate with RF2 in mediating chain termination, facilitating clearance by degradation. This function of RF3 reduces the accumulation of misfolded proteins and is critical for proteostasis maintenance and cell survival under conditions of limited chaperone availability.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Biossíntese de Proteínas/fisiologia , Aminoácidos/metabolismo , Sobrevivência Celular/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Peptidil Transferases/metabolismo , Ligação Proteica/fisiologia , Dobramento de Proteína , Proteômica/métodos , Proteostase/fisiologia , Ribossomos/metabolismo
2.
Mol Cell ; 73(6): 1282-1291.e8, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30792174

RESUMO

Toxin-antitoxin (TA) systems regulate fundamental cellular processes in bacteria and represent potential therapeutic targets. We report a new RES-Xre TA system in multiple human pathogens, including Mycobacterium tuberculosis. The toxin, MbcT, is bactericidal unless neutralized by its antitoxin MbcA. To investigate the mechanism, we solved the 1.8 Å-resolution crystal structure of the MbcTA complex. We found that MbcT resembles secreted NAD+-dependent bacterial exotoxins, such as diphtheria toxin. Indeed, MbcT catalyzes NAD+ degradation in vitro and in vivo. Unexpectedly, the reaction is stimulated by inorganic phosphate, and our data reveal that MbcT is a NAD+ phosphorylase. In the absence of MbcA, MbcT triggers rapid M. tuberculosis cell death, which reduces mycobacterial survival in macrophages and prolongs the survival of infected mice. Our study expands the molecular activities employed by bacterial TA modules and uncovers a new class of enzymes that could be exploited to treat tuberculosis and other infectious diseases.


Assuntos
Antitoxinas/metabolismo , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Macrófagos/microbiologia , Mycobacterium tuberculosis/enzimologia , Fosforilases/metabolismo , Sistemas Toxina-Antitoxina , Tuberculose/microbiologia , Animais , Antibióticos Antituberculose/farmacologia , Antitoxinas/química , Antitoxinas/genética , Carga Bacteriana , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Células Cultivadas , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Patógeno , Humanos , Cinética , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos SCID , Camundongos Transgênicos , Viabilidade Microbiana , Modelos Moleculares , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/patogenicidade , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , NAD/metabolismo , Fosforilases/química , Fosforilases/genética , Conformação Proteica , Sistemas Toxina-Antitoxina/genética , Tuberculose/tratamento farmacológico
3.
PLoS Comput Biol ; 15(4): e1006946, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31022176

RESUMO

Bacterial Toxin-Antitoxin systems (TAS) are involved in key biological functions including plasmid maintenance, defense against phages, persistence and virulence. They are found in nearly all phyla and classified into 6 different types based on the mode of inactivation of the toxin, with the type II TAS being the best characterized so far. We have herein developed a new in silico discovery pipeline named TASmania, which mines the >41K assemblies of the EnsemblBacteria database for known and uncharacterized protein components of type I to IV TAS loci. Our pipeline annotates the proteins based on a list of curated HMMs, which leads to >2.106 loci candidates, including orphan toxins and antitoxins, and organises the candidates in pseudo-operon structures in order to identify new TAS candidates based on a guilt-by-association strategy. In addition, we classify the two-component TAS with an unsupervised method on top of the pseudo-operon (pop) gene structures, leading to 1567 "popTA" models offering a more robust classification of the TAs families. These results give valuable clues in understanding the toxin/antitoxin modular structures and the TAS phylum specificities. Preliminary in vivo work confirmed six putative new hits in Mycobacterium tuberculosis as promising candidates. The TASmania database is available on the following server https://shiny.bioinformatics.unibe.ch/apps/tasmania/.


Assuntos
Antitoxinas , Toxinas Bacterianas , Bases de Dados de Proteínas , Antitoxinas/química , Antitoxinas/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Análise por Conglomerados , Biologia Computacional/métodos , Cadeias de Markov , Software
4.
Proc Natl Acad Sci U S A ; 114(47): 12584-12589, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29114057

RESUMO

SecB chaperones assist protein export in bacteria. However, certain SecB family members have diverged to become specialized toward the control of toxin-antitoxin (TA) systems known to promote bacterial adaptation to stress and persistence. In such tripartite TA-chaperone (TAC) systems, the chaperone was shown to assist folding and to prevent degradation of its cognate antitoxin, thus facilitating inhibition of the toxin. Here, we used both the export chaperone SecB of Escherichia coli and the tripartite TAC system of Mycobacterium tuberculosis as a model to investigate how generic chaperones can specialize toward the control of TA systems. Through directed evolution of SecB, we have identified and characterized mutations that specifically improve the ability of SecB to control our model TA system without affecting its function in protein export. Such a remarkable plasticity of SecB chaperone function suggests that its substrate binding surface can be readily remodeled to accommodate specific clients.


Assuntos
Proteínas de Bactérias/química , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Chaperonas Moleculares/química , Mycobacterium tuberculosis/genética , Sistemas Toxina-Antitoxina/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Evolução Molecular Direcionada , Escherichia coli/metabolismo , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Mycobacterium tuberculosis/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
5.
Cell Mol Life Sci ; 74(5): 891-908, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27730255

RESUMO

Escherichia coli has been widely used for the production of recombinant proteins. To improve protein production yields in E. coli, directed engineering approaches have been commonly used. However, there are only few reported examples of the isolation of E. coli protein production strains using evolutionary approaches. Here, we first give an introduction to bacterial evolution and mutagenesis to set the stage for discussing how so far selection- and screening-based approaches have been used to isolate E. coli protein production strains. Finally, we discuss how evolutionary approaches may be used in the future to isolate E. coli strains with improved protein production characteristics.


Assuntos
Escherichia coli/isolamento & purificação , Proteínas Recombinantes/biossíntese , Evolução Biológica , DNA Bacteriano/metabolismo , Mutagênese , Mutação/genética
6.
J Infect Dis ; 214(6): 916-24, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27412582

RESUMO

The genotoxin colibactin, synthesized by Escherichia coli, is a secondary metabolite belonging to the chemical family of hybrid polyketide/nonribosomal peptide compounds. It is produced by a complex biosynthetic assembly line encoded by the pks pathogenicity island. The presence of this large cluster of genes in the E. coli genome is invariably associated with the high-pathogenicity island, encoding the siderophore yersiniabactin, which belongs to the same chemical family as colibactin. The E. coli heat shock protein HtpG (Hsp90Ec) is the bacterial homolog of the eukaryotic molecular chaperone Hsp90, which is involved in the protection of cellular proteins against a variety of environmental stresses. In contrast to eukaryotic Hsp90, the functions and client proteins of Hsp90Ec are poorly known. Here, we demonstrated that production of colibactin and yersiniabactin is abolished in the absence of Hsp90Ec We further characterized an interplay between the Hsp90Ec molecular chaperone and the ClpQ protease involved in colibactin and yersiniabactin synthesis. Finally, we demonstrated that Hsp90Ec is required for the full in vivo virulence of extraintestinal pathogenic E. coli This is the first report highlighting the role of heat shock protein Hps90Ec in the production of two secondary metabolites involved in E. coli virulence.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Mutagênicos/metabolismo , Peptídeos/metabolismo , Fenóis/metabolismo , Policetídeos/metabolismo , Sideróforos/metabolismo , Tiazóis/metabolismo , Animais , Modelos Animais de Doenças , Endopeptidase Clp/metabolismo , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Proteínas de Escherichia coli/genética , Feminino , Deleção de Genes , Proteínas de Choque Térmico HSP90/genética , Camundongos Endogâmicos C57BL , Mapeamento de Interação de Proteínas , Ratos Wistar , Virulência
7.
J Biol Chem ; 289(27): 19089-97, 2014 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-24855643

RESUMO

Protein secretion in Gram-negative bacteria is essential for both cell viability and pathogenesis. The vast majority of secreted proteins exit the cytoplasm through a transmembrane conduit called the Sec translocon in a process that is facilitated by ancillary modules, such as SecA, SecDF-YajC, YidC, and PpiD. In this study we have characterized YfgM, a protein with no annotated function. We found it to be a novel ancillary subunit of the Sec translocon as it co-purifies with both PpiD and the SecYEG translocon after immunoprecipitation and blue native/SDS-PAGE. Phenotypic analyses of strains lacking yfgM suggest that its physiological role in the cell overlaps with the periplasmic chaperones SurA and Skp. We, therefore, propose a role for YfgM in mediating the trafficking of proteins from the Sec translocon to the periplasmic chaperone network that contains SurA, Skp, DegP, PpiD, and FkpA.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Subunidades Proteicas/metabolismo , Membrana Celular/metabolismo , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Escherichia coli/citologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Deleção de Genes , Chaperonas Moleculares/genética , Estresse Oxidativo , Periplasma/metabolismo , Transporte Proteico , Canais de Translocação SEC
8.
Biochim Biophys Acta ; 1843(8): 1442-56, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24269840

RESUMO

Nascent polypeptides emerging from the ribosome are assisted by a pool of molecular chaperones and targeting factors, which enable them to efficiently partition as cytosolic, integral membrane or exported proteins. Extensive genetic and biochemical analyses have significantly expanded our knowledge of chaperone tasking throughout this process. In bacteria, it is known that the folding of newly-synthesized cytosolic proteins is mainly orchestrated by three highly conserved molecular chaperones, namely Trigger Factor (TF), DnaK (HSP70) and GroEL (HSP60). Yet, it has been reported that these major chaperones are strongly involved in protein translocation pathways as well. This review describes such essential molecular chaperone functions, with emphasis on both the biogenesis of inner membrane proteins and the post-translational targeting of presecretory proteins to the Sec and the twin-arginine translocation (Tat) pathways. Critical interplay between TF, DnaK, GroEL and other molecular chaperones and targeting factors, including SecB, SecA, the signal recognition particle (SRP) and the redox enzyme maturation proteins (REMPs) is also discussed. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.


Assuntos
Membrana Celular/metabolismo , Chaperonas Moleculares/metabolismo , Transporte Proteico , Bactérias/metabolismo , Chaperonina 60/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Oxirredução , Partícula de Reconhecimento de Sinal/metabolismo
9.
PLoS Genet ; 8(11): e1003037, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23133404

RESUMO

The universally conserved J-domain proteins (JDPs) are obligate cochaperone partners of the Hsp70 (DnaK) chaperone. They stimulate Hsp70's ATPase activity, facilitate substrate delivery, and confer specific cellular localization to Hsp70. In this work, we have identified and characterized the first functional JDP protein encoded by a bacteriophage. Specifically, we show that the ORFan gene 057w of the T4-related enterobacteriophage RB43 encodes a bona fide JDP protein, named Rki, which specifically interacts with the Escherichia coli host multifunctional DnaK chaperone. However, in sharp contrast with the three known host JDP cochaperones of DnaK encoded by E. coli, Rki does not act as a generic cochaperone in vivo or in vitro. Expression of Rki alone is highly toxic for wild-type E. coli, but toxicity is abolished in the absence of endogenous DnaK or when the conserved J-domain of Rki is mutated. Further in vivo analyses revealed that Rki is expressed early after infection by RB43 and that deletion of the rki gene significantly impairs RB43 proliferation. Furthermore, we show that mutations in the host dnaK gene efficiently suppress the growth phenotype of the RB43 rki deletion mutant, thus indicating that Rki specifically interferes with DnaK cellular function. Finally, we show that the interaction of Rki with the host DnaK chaperone rapidly results in the stabilization of the heat-shock factor σ(32), which is normally targeted for degradation by DnaK. The mechanism by which the Rki-dependent stabilization of σ(32) facilitates RB43 bacteriophage proliferation is discussed.


Assuntos
Bacteriófagos , Proteínas de Escherichia coli , Escherichia coli/genética , Proteínas de Choque Térmico HSP70 , Fator sigma , Proteínas Virais/genética , Proteínas Virais/metabolismo , Bacteriófagos/genética , Bacteriófagos/fisiologia , Proliferação de Células , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação , Estrutura Terciária de Proteína/genética , Fator sigma/genética , Fator sigma/metabolismo
10.
Proc Natl Acad Sci U S A ; 108(20): 8438-43, 2011 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-21536872

RESUMO

A major step in the biogenesis of newly synthesized precursor proteins in bacteria is their targeting to the Sec translocon at the inner membrane. In gram-negative bacteria, the chaperone SecB binds nonnative forms of precursors and specifically transfers them to the SecA motor component of the translocase, thus facilitating their export. The major human pathogen Mycobacterium tuberculosis is an unusual gram-positive bacterium with a well-defined outer membrane and outer membrane proteins. Assistance to precursor proteins by chaperones in this bacterium remains largely unexplored. Here we show that the product of the previously uncharacterized Rv1957 gene of M. tuberculosis can substitute for SecB functions in Escherichia coli and prevent preprotein aggregation in vitro. Interestingly, in M. tuberculosis, Rv1957 is clustered with a functional stress-responsive higB-higA toxin-antitoxin (TA) locus of unknown function. Further in vivo experiments in E. coli and in Mycobacterium marinum strains that do not possess the TA-chaperone locus show that the severe toxicity of the toxin was entirely inhibited when the antitoxin and the chaperone were jointly expressed. We found that Rv1957 acts directly on the antitoxin by preventing its aggregation and protecting it from degradation. Taken together, our results show that the SecB-like chaperone Rv1957 specifically controls a stress-responsive TA system relevant for M. tuberculosis adaptive response.


Assuntos
Proteínas de Bactérias/fisiologia , Chaperonas Moleculares/fisiologia , Mycobacterium tuberculosis/fisiologia , Estresse Fisiológico , Antitoxinas , Toxinas Bacterianas , Genes Bacterianos
11.
Cell Stress Chaperones ; 29(1): 21-33, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38320449

RESUMO

J-domain proteins (JDPs) are the largest family of chaperones in most organisms, but much of how they function within the network of other chaperones and protein quality control machineries is still an enigma. Here, we report on the latest findings related to JDP functions presented at a dedicated JDP workshop in Gdansk, Poland. The report does not include all (details) of what was shared and discussed at the meeting, because some of these original data have not yet been accepted for publication elsewhere or represented still preliminary observations at the time.


Assuntos
Proteínas de Choque Térmico HSP70 , Chaperonas Moleculares , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Polônia , Proteínas de Choque Térmico HSP40/metabolismo
12.
J Biol Chem ; 287(53): 44435-46, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23148222

RESUMO

Intracellular de novo protein folding is assisted by cellular networks of molecular chaperones. In Escherichia coli, cooperation between the chaperones trigger factor (TF) and DnaK is central to this process. Accordingly, the simultaneous deletion of both chaperone-encoding genes leads to severe growth and protein folding defects. Herein, we took advantage of such defective phenotypes to further elucidate the interactions of chaperone networks in vivo. We show that disruption of the TF/DnaK chaperone pathway is efficiently rescued by overexpression of the redox-regulated chaperone Hsp33. Consistent with this observation, the deletion of hslO, the Hsp33 structural gene, is no longer tolerated in the absence of the TF/DnaK pathway. However, in contrast with other chaperones like GroEL or SecB, suppression by Hsp33 was not attributed to its potential overlapping general chaperone function(s). Instead, we show that overexpressed Hsp33 specifically binds to elongation factor-Tu (EF-Tu) and targets it for degradation by the protease Lon. This synergistic action of Hsp33 and Lon was responsible for the rescue of bacterial growth in the absence of TF and DnaK, by presumably restoring the coupling between translation and the downstream folding capacity of the cell. In support of this hypothesis, we show that overexpression of the stress-responsive toxin HipA, which inhibits EF-Tu, also rescues bacterial growth and protein folding in the absence of TF and DnaK. The relevance for such a convergence of networks of chaperones and proteases acting directly on EF-Tu to modulate the intracellular rate of protein synthesis in response to protein aggregation is discussed.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Fator Tu de Elongação de Peptídeos/química , Peptidilprolil Isomerase/metabolismo , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico/genética , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Peptidilprolil Isomerase/genética , Ligação Proteica , Estabilidade Proteica
13.
Nat Commun ; 14(1): 4644, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591829

RESUMO

Mycobacterium tuberculosis, the bacterium responsible for human tuberculosis, has a genome encoding a remarkably high number of toxin-antitoxin systems of largely unknown function. We have recently shown that the M. tuberculosis genome encodes four of a widespread, MenAT family of nucleotidyltransferase toxin-antitoxin systems. In this study we characterize MenAT1, using tRNA sequencing to demonstrate MenT1 tRNA modification activity. MenT1 activity is blocked by MenA1, a short protein antitoxin unrelated to the MenA3 kinase. X-ray crystallographic analysis shows blockage of the conserved MenT fold by asymmetric binding of MenA1 across two MenT1 protomers, forming a heterotrimeric toxin-antitoxin complex. Finally, we also demonstrate tRNA modification by toxin MenT4, indicating conserved activity across the MenT family. Our study highlights variation in tRNA target preferences by MenT toxins, selective use of nucleotide substrates, and diverse modes of MenA antitoxin activity.


Assuntos
Antitoxinas , Mycobacterium tuberculosis , Toxinas Biológicas , Humanos , Antitoxinas/genética , Nucleotidiltransferases , Nucleotídeos , RNA de Transferência/genética
14.
J Biol Chem ; 286(45): 38876-85, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21908845

RESUMO

Temperate bacteriophage lytic development is intrinsically related to the stress response in particular at the DNA replication and virion maturation steps. Alternatively, temperate phages become lysogenic and integrate their genome into the host chromosome. Under stressful conditions, the prophage resumes a lytic development program, and the phage DNA is excised before being replicated. The KplE1 defective prophage of Escherichia coli K12 constitutes a model system because it is fully competent for integrative as well as excisive recombination and presents an atypical recombination module, which is conserved in various phage genomes. In this work, we identified the host-encoded stress-responsive molecular chaperone DnaJ (Hsp40) as an active participant in KplE1 prophage excision. We first show that the recombination directionality factor TorI of KplE1 specifically interacts with DnaJ. In addition, we found that DnaJ dramatically enhances both TorI binding to its DNA target and excisive recombination in vitro. Remarkably, such stimulatory effect by DnaJ was performed independently of its DnaK chaperone partner and did not require a functional DnaJ J-domain. Taken together, our results underline a novel and unsuspected functional interaction between the generic host stress-regulated chaperone and temperate bacteriophage lysogenic development.


Assuntos
DNA Viral/metabolismo , Escherichia coli K12/metabolismo , Escherichia coli K12/virologia , Proteínas de Choque Térmico HSP40/metabolismo , Prófagos/fisiologia , Recombinação Genética/fisiologia , Ativação Viral/fisiologia , DNA Viral/genética , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Estrutura Terciária de Proteína
15.
Nat Commun ; 13(1): 2641, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35552387

RESUMO

Toxins of toxin-antitoxin systems use diverse mechanisms to control bacterial growth. Here, we focus on the deleterious toxin of the atypical tripartite toxin-antitoxin-chaperone (TAC) system of Mycobacterium tuberculosis, whose inhibition requires the concerted action of the antitoxin and its dedicated SecB-like chaperone. We show that the TAC toxin is a bona fide ribonuclease and identify exact cleavage sites in mRNA targets on a transcriptome-wide scale in vivo. mRNA cleavage by the toxin occurs after the second nucleotide of the ribosomal A-site codon during translation, with a strong preference for CCA codons in vivo. Finally, we report the cryo-EM structure of the ribosome-bound TAC toxin in the presence of native M. tuberculosis cspA mRNA, revealing the specific mechanism by which the TAC toxin interacts with the ribosome and the tRNA in the P-site to cleave its mRNA target.


Assuntos
Antitoxinas , Mycobacterium tuberculosis , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Microscopia Crioeletrônica , Chaperonas Moleculares/genética , Mycobacterium tuberculosis/genética , RNA Mensageiro/genética , Ribossomos
16.
mBio ; 13(2): e0325121, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35289645

RESUMO

Copper is well known for its antimicrobial and antiviral properties. Under aerobic conditions, copper toxicity relies in part on the production of reactive oxygen species (ROS), especially in the periplasmic compartment. However, copper is significantly more toxic under anaerobic conditions, in which ROS cannot be produced. This toxicity has been proposed to arise from the inactivation of proteins through mismetallations. Here, using the bacterium Escherichia coli, we discovered that copper treatment under anaerobic conditions leads to a significant increase in protein aggregation. In vitro experiments using E. coli lysates and tightly controlled redox conditions confirmed that treatment with Cu+ under anaerobic conditions leads to severe ROS-independent protein aggregation. Proteomic analysis of aggregated proteins revealed an enrichment of cysteine- and histidine-containing proteins in the Cu+-treated samples, suggesting that nonspecific interactions of Cu+ with these residues are likely responsible for the observed protein aggregation. In addition, E. coli strains lacking the cytosolic chaperone DnaK or trigger factor are highly sensitive to copper stress. These results reveal that bacteria rely on these chaperone systems to protect themselves against Cu-mediated protein aggregation and further support our finding that Cu toxicity is related to Cu-induced protein aggregation. Overall, our work provides new insights into the mechanism of Cu toxicity and the defense mechanisms that bacteria employ to survive. IMPORTANCE With the increase of antibiotic drug resistance, alternative antibacterial treatment strategies are needed. Copper is a well-known antimicrobial and antiviral agent; however, the underlying molecular mechanisms by which copper causes cell death are not yet fully understood. Herein, we report the finding that Cu+, the physiologically relevant copper species in bacteria, causes widespread protein aggregation. We demonstrate that the molecular chaperones DnaK and trigger factor protect bacteria against Cu-induced cell death, highlighting, for the first time, the central role of these chaperones under Cu+ stress. Our studies reveal Cu-induced protein aggregation to be a central mechanism of Cu toxicity, a finding that will serve to guide future mechanistic studies and drug development.


Assuntos
Cobre , Agregados Proteicos , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bactérias/metabolismo , Cobre/metabolismo , Cobre/toxicidade , Escherichia coli/genética , Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Proteômica , Espécies Reativas de Oxigênio/metabolismo
17.
J Proteome Res ; 10(4): 1848-59, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21210718

RESUMO

The cell envelope of Escherichia coli is an essential structure that modulates exchanges between the cell and the extra-cellular milieu. Previous proteomic analyses have suggested that it contains a significant number of proteins with no annotated function. To gain insight into these proteins and the general organization of the cell envelope proteome, we have carried out a systematic analysis of native membrane protein complexes. We have identified 30 membrane protein complexes (6 of which are novel) and present reference maps that can be used for cell envelope profiling. In one instance, we identified a protein with no annotated function (YfgM) in a complex with a well-characterized periplasmic chaperone (PpiD). Using the guilt by association principle, we suggest that YfgM is also part of the periplasmic chaperone network. The approach we present circumvents the need for engineering of tags and protein overexpression. It is applicable for the analysis of membrane protein complexes in any organism and will be particularly useful for less-characterized organisms where conventional strategies that require protein engineering (i.e., 2-hybrid based approaches and TAP-tagging) are not feasible.


Assuntos
Proteínas de Escherichia coli/análise , Escherichia coli/química , Proteínas de Membrana/análise , Chaperonas Moleculares/análise , Complexos Multiproteicos/química , Cromatografia por Troca Iônica/métodos , Eletroforese em Gel Bidimensional/métodos , Proteínas de Escherichia coli/classificação , Proteínas de Escherichia coli/isolamento & purificação , Espectrometria de Massas/métodos , Proteínas de Membrana/classificação , Proteínas de Membrana/isolamento & purificação , Chaperonas Moleculares/classificação , Chaperonas Moleculares/isolamento & purificação , Peso Molecular , Complexos Multiproteicos/isolamento & purificação , Filogenia , Proteoma/análise , Proteômica/métodos
18.
J Biol Chem ; 285(30): 23506-14, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20504766

RESUMO

Various environmental insults result in irreversible damage to proteins and protein complexes. To cope, cells have evolved dedicated protein quality control mechanisms involving molecular chaperones and proteases. Here, we provide both genetic and biochemical evidence that the Lon protease and the SecB and DnaJ/Hsp40 chaperones are involved in the quality control of presecretory proteins in Escherichia coli. We showed that mutations in the lon gene alleviate the cold-sensitive phenotype of a secB mutant. Such suppression was not observed with either clpP or clpQ protease mutants. In comparison to the respective single mutants, the double secB lon mutant strongly accumulates aggregates of SecB substrates at physiological temperatures, suggesting that the chaperone and the protease share substrates. These observations were extended in vitro by showing that the main substrates identified in secB lon aggregates, namely proOmpF and proOmpC, are highly sensitive to specific degradation by Lon. In contrast, both substrates are significantly protected from Lon degradation by SecB. Interestingly, the chaperone DnaJ by itself protects substrates better from Lon degradation than SecB or the complete DnaK/DnaJ/GrpE chaperone machinery. In agreement with this finding, a DnaJ mutant protein that does not functionally interact in vivo with DnaK efficiently suppresses the SecB cold-sensitive phenotype, highlighting the role of DnaJ in assisting presecretory proteins. Taken together, our data suggest that when the Sec secretion pathway is compromised, a pool of presecretory proteins is transiently maintained in a translocation-competent state and, thus, protected from Lon degradation by either the SecB or DnaJ chaperones.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Protease La/metabolismo , Temperatura Baixa , Escherichia coli/fisiologia , Deleção de Genes , Mutação , Protease La/deficiência , Protease La/genética , Controle de Qualidade
19.
J Biol Chem ; 285(28): 21679-88, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20448033

RESUMO

The Escherichia coli Hsp40 DnaJ uses its J-domain (Jd) to couple ATP hydrolysis and client protein capture in Hsp70 DnaK. Fusion of the Jd to peptide p5 (as in Jdp5) dramatically increases the apparent affinity of the p5 moiety for DnaK in the presence of ATP, and Jdp5 stimulates ATP hydrolysis in DnaK by several orders of magnitude. NMR experiments with [(15)N]Jdp5 demonstrated that the peptide tethers the Jd to the ATPase domain. Thus, ATP hydrolysis and client protein binding in DnaK are coupled principally through the association of the client with DnaJ. Overexpression of a recombinant Jd was specifically toxic to cells that simultaneously expressed DnaK. No toxicity was observed when overexpressing Jdp5 or mutant Jd or when co-overexpressing the Jd and the nucleotide exchange factor GrpE. The results suggest that the Jd shifts DnaK to a client-bound form by stimulating the DnaK ATPase but only when the Jd is brought to DnaK by a client-Hsp40 complex.


Assuntos
Adenosina Trifosfatases/química , Escherichia coli/enzimologia , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP70/química , Chaperoninas/química , Proteínas de Escherichia coli/química , Hidrólise , Espectroscopia de Ressonância Magnética , Chaperonas Moleculares , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química
20.
J Biol Chem ; 285(51): 39682-90, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-20959450

RESUMO

Autotransporters (ATs) constitute an important family of virulence factors secreted by Gram-negative bacteria. Following their translocation across the inner membrane (IM), ATs temporarily reside in the periplasmic space after which they are secreted into the extracellular environment. Previous studies have shown that the AT hemoglobin protease (Hbp) of Escherichia coli requires a functional signal recognition particle pathway and Sec translocon for optimal targeting to and translocation across the IM. Here, we analyzed the mode of IM translocation of Hbp in more detail. Using site-directed photocross-linking, we found that the Hbp signal peptide is adjacent to YidC early during biogenesis. Notably, YidC is in part associated with the Sec translocon but has until now primarily been implicated in the biogenesis of IM proteins. In vivo, YidC appeared critical for the biogenesis of the ATs Hbp and EspC. For Hbp, depletion of YidC resulted in the formation of secretion-incompetent intermediates that were sensitive to degradation by the periplasmic protease DegP, indicating that YidC activity affects Hbp biogenesis at a late stage, after translocation across the IM. This is the first demonstration of a role for YidC in the biogenesis of an extracellular protein. We propose that YidC is required for maintenance of the translocation-competent state of certain ATs in the periplasm. The large periplasmic domain of YidC is not critical for this novel functionality as it can be deleted without affecting Hbp biogenesis.


Assuntos
Endopeptidases/biossíntese , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Periplasma/metabolismo , Sinais Direcionadores de Proteínas/fisiologia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Endopeptidases/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana Transportadoras/genética , Periplasma/genética , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Estrutura Terciária de Proteína , Canais de Translocação SEC , Proteínas SecA , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA