Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 133: 112170, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38691919

RESUMO

Acute kidney injury (AKI) is characterized by a sudden decline in renal function. Traditional Chinese medicine has employed Fuzi for kidney diseases; however, concerns about neurotoxicity and cardiotoxicity have constrained its clinical use. This study explored mesaconine, derived from processed Fuzi, as a promising low-toxicity alternative for AKI treatment. In this study, we assessed the protective effects of mesaconine in gentamicin (GM)-induced NRK-52E cells and AKI rat models in vitro and in vivo, respectively. Mesaconine promotes the proliferation of damaged NRK-52E cells and down-regulates intracellular transforming growth factor ß1 (TGF-ß1) and kidney injury molecule 1 (KIM-1) to promote renal cell repair. Concurrently, mesaconine restored mitochondrial morphology and permeability transition pores, reversed the decrease in mitochondrial membrane potential, mitigated mitochondrial dysfunction, decreased ATP production, inhibited inflammatory factor release, and reduced early apoptosis rates. In vivo, GM-induced AKI rat models exhibited elevated AKI biomarkers, in which mesaconine was effectively reduced, indicating improved renal function. Mesaconine enhanced superoxide dismutase activity, reduced malondialdehyde content, alleviated inflammatory infiltrate, mitigated tubular and glomerular lesions, and downregulated NF-κB (nuclear factor-κb) p65 expression, leading to decreased tumor necrosis factor-α (TNF-α) and IL-1ß (interleukin-1ß) levels in GM-induced AKI animals. Furthermore, mesaconine inhibited the expression of renal pro-apoptotic proteins (Bax, cytochrome c, cleaved-caspase 9, and cleaved-caspase 3) and induced the release of the anti-apoptotic protein bcl-2, further suppressing apoptosis. This study highlighted the therapeutic potential of mesaconine in GM-induced AKI. Its multifaceted mechanisms, including the restoration of mitochondrial dysfunction, anti-inflammatory and antioxidant effects, and apoptosis mitigation, make mesaconine a promising candidate for further exploration in AKI management.


Assuntos
Aconitum , Injúria Renal Aguda , Apoptose , Rim , Mitocôndrias , Ratos Sprague-Dawley , Animais , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Apoptose/efeitos dos fármacos , Aconitum/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Masculino , Ratos , Linhagem Celular , Rim/efeitos dos fármacos , Rim/patologia , Gentamicinas/toxicidade , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Aconitina/análogos & derivados , Aconitina/farmacologia , Aconitina/uso terapêutico , Modelos Animais de Doenças , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Diterpenos
2.
J Pharm Biomed Anal ; 243: 116115, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38513497

RESUMO

Crocus sativus L. (C. sativus) has its stigma as the main valuable part used. With extremely low production and high prices, stigma is considered a scarce resource. As a result, its petals, considered as by-products, are often discarded, leading to significant waste. We developed a UPLC-Q-Orbitrap HRMS method for qualitative analysis of stigmas and petals and a UHPLC-QQQ-MS/MS method for simultaneous quantification of 9 characteristic active compounds for the first time, and compared their biological activity in vitro. The results indicated that a total of 63 compounds were identified in the petals and stigmas. The content of flavonoids in the petals was significantly superior to that in the stigma, and the content of quercetin in the petals was 50 times higher than that in the stigma. The results of the in vitro evaluation of biological activity indicated that both the petals (•OH: IC50=39.70 mg/mL; DPPH: IC50=28.37 mg/mL; ABTS: IC50=0.9868 mg/mL)and stigma (•OH: IC50=34.41 mg/mL; DPPH: IC50=38.99 mg/mL; ABTS: IC50=3.194 mg/mL)demonstrated comparable antioxidant activities. However, the tyrosinase inhibitory activity in petals (IC50=21.17 mg/mL) was weaker than that in stigma(IC50=1.488 mg/mL). This study provides a fast, reliable, and efficient analytical method that can be used for the quality assessment of petals as a natural resource and its related products in the food and pharmaceutical industries.


Assuntos
Antioxidantes , Benzotiazóis , Ácidos Sulfônicos , Espectrometria de Massas em Tandem , Antioxidantes/farmacologia , Flavonoides/farmacologia , Quercetina , Extratos Vegetais/farmacologia
3.
Front Chem ; 12: 1339364, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318112

RESUMO

Aconitine (AC), which is the primary bioactive diterpene alkaloid derived from Aconitum L plants, have attracted considerable interest due to its unique structural feature. Additionally, AC demonstrates a range of biological activities, such as its ability to enhance cardiac function, inhibit tumor growth, reduce inflammation, and provide analgesic effects. However, the structure-activity relationships of AC are remain unclear. A clear understanding of these relationships is indeed critical in developing effective biomedical applications with AC. In line with these challenges, this paper summarized the structural characteristics of AC and relevant functional and bioactive properties and the structure-activity relationships presented in biomedical applications. The primary temporal scope of this review was established as the period spanning from 2010 to 2023. Subsequently, the objective of this review was to provide a comprehensive understanding of the specific action mechanism of AC, while also exploring potential novel applications of AC derivatives in the biomedical field, drawing upon their structural characteristics. In conclusion, this review has provided a comprehensive analysis of the challenges and prospects associated with AC in the elucidation of structure-bioactivity relationships. Furthermore, the importance of exploring modern biotechnology approaches to enhance the potential biomedical applications of AC has been emphasized.

4.
Front Chem ; 12: 1406051, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38860236

RESUMO

This study introduces newly discovered chrysin derivatives that show potential as candidate molecules for treating inflammatory bowel disease (IBD). Compound 4b, among the synthesized compounds, displayed significant inhibitory effects on monocyte adhesion to colon epithelium induced by TNF-α, with an IC50 value of 4.71 µM. Further mechanistic studies demonstrated that 4b inhibits the production of reactive oxygen species (ROS) and downregulates the expression of ICAM-1 and MCP-1, key molecules involved in monocyte-epithelial adhesion, as well as the transcriptional activity of NF-κB. In vivo experiments have shown that compound 4b exhibits a dose-dependent inhibition of 2, 4, 6-trinitrobenzenesulfonic acid (TNBS)-induced colitis in rats, thereby validating its effectiveness as a colitis inhibitor in animal models. These results indicate that 4b shows considerable promise as a therapeutic agent for managing IBD.

5.
Adv Sci (Weinh) ; 11(20): e2304326, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38544338

RESUMO

Chronic atrophic gastritis (AG) is initiated mainly by Helicobacter pylori infection, which may progress to stomach cancer following the Correa's cascade. The current treatment regimen is H. pylori eradication, yet evidence is lacking that this treatment is effective on later stages of AG especially gastric gland atrophy. Here, using AG mouse model, patient samples, gastric organoids, and lineage tracing, this study unraveled gastric stem cell (GSC) defect as a crucial pathogenic factor in AG in mouse and human. Moreover, a natural peptide is isolated from a traditional Chinese medicine that activated GSCs to regenerate gastric epithelia in experimental AG models and revitalized the atrophic gastric organoids derived from patients. It is further shown that the peptide exerts its functions by stabilizing the EGF-EGFR complex and specifically activating the downstream ERK and Stat1 signaling. Overall, these findings advance the understanding of AG pathogenesis and open a new avenue for AG treatment.


Assuntos
Modelos Animais de Doenças , Gastrite Atrófica , Células-Tronco , Gastrite Atrófica/tratamento farmacológico , Gastrite Atrófica/metabolismo , Animais , Camundongos , Humanos , Células-Tronco/metabolismo , Células-Tronco/efeitos dos fármacos , Medicina Tradicional Chinesa/métodos , Peptídeos/farmacologia , Mucosa Gástrica/metabolismo , Mucosa Gástrica/efeitos dos fármacos , Infecções por Helicobacter/tratamento farmacológico , Doença Crônica , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA