Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Br J Haematol ; 204(5): 1862-1871, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38613165

RESUMO

Peripheral T-cell lymphomas (PTCL) are morphologically and biologically heterogeneous and a subset expresses CD30, including anaplastic large cell lymphomas (ALCL) and a minority of PTCL, not otherwise specified (PTCL, NOS). ALCL with ALK translocations (ALCL, ALK+) are readily identified by routine diagnostic methods, but differentiating ALCL without ALK translocation (ALCL, ALK-) and PTCL, NOS expressing CD30 (PTCL CD30+) can be challenging. Furthermore, rare PTCL co-express CD30 and CD15 (PTCL CD30+CD15+); some resemble ALCL, ALK- while others resemble classic Hodgkin lymphoma. To explore the relationship between PTCL CD30+CD15+ and ALCL, ALK-, we analysed 19 cases of PTCL with CD30 expression, previously diagnosed as ALCL, ALK- (nine cases) and PTCL CD30+CD15+ (10 cases) for DUSP22/IRF4 rearrangements, coding RNA expression and selected transcriptome analysis using the NanoString nCounter gene expression analysis platform. Unsupervised clustering showed no clear segregation between ALCL, ALK- and PTCL CD30+CD15+. Three cases previously classified as PTCL CD30+CD15+ showed DUSP22/IRF4 rearrangements, favouring a diagnosis of ALCL, ALK-. Our results suggest that cases previously designated PTCL CD30+CD15+, likely fall within the spectrum of ALCL, ALK-; additionally, a subset of ALCL, ALK- with DUSP22/IRF4 rearrangement expresses CD15, consistent with previous reports and expands the immunophenotypic spectrum of this lymphoma subgroup.


Assuntos
Quinase do Linfoma Anaplásico , Antígeno Ki-1 , Antígenos CD15 , Linfoma Anaplásico de Células Grandes , Linfoma de Células T Periférico , Feminino , Humanos , Masculino , Quinase do Linfoma Anaplásico/genética , Quinase do Linfoma Anaplásico/metabolismo , Fosfatases de Especificidade Dupla/genética , Rearranjo Gênico , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Antígeno Ki-1/metabolismo , Antígeno Ki-1/genética , Antígeno Ki-1/análise , Antígenos CD15/análise , Antígenos CD15/metabolismo , Linfoma Anaplásico de Células Grandes/genética , Linfoma Anaplásico de Células Grandes/patologia , Linfoma Anaplásico de Células Grandes/diagnóstico , Linfoma de Células T Periférico/genética , Linfoma de Células T Periférico/metabolismo , Linfoma de Células T Periférico/patologia , Linfoma de Células T Periférico/diagnóstico , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética
2.
Nat Commun ; 15(1): 4241, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762500

RESUMO

Glioblastoma multiforme (GBM) is a highly aggressive brain tumor characterized by invasive behavior and a compromised immune response, presenting treatment challenges. Surgical debulking of GBM fails to address its highly infiltrative nature, leaving neoplastic satellites in an environment characterized by impaired immune surveillance, ultimately paving the way for tumor recurrence. Tracking and eradicating residual GBM cells by boosting antitumor immunity is critical for preventing postoperative relapse, but effective immunotherapeutic strategies remain elusive. Here, we report a cavity-injectable bacterium-hydrogel superstructure that targets GBM satellites around the cavity, triggers GBM pyroptosis, and initiates innate and adaptive immune responses, which prevent postoperative GBM relapse in male mice. The immunostimulatory Salmonella delivery vehicles (SDVs) engineered from attenuated Salmonella typhimurium (VNP20009) seek and attack GBM cells. Salmonella lysis-inducing nanocapsules (SLINs), designed to trigger autolysis, are tethered to the SDVs, eliciting antitumor immune response through the intracellular release of bacterial components. Furthermore, SDVs and SLINs administration via intracavitary injection of the ATP-responsive hydrogel can recruit phagocytes and promote antigen presentation, initiating an adaptive immune response. Therefore, our work offers a local bacteriotherapy for stimulating anti-GBM immunity, with potential applicability for patients facing malignancies at a high risk of recurrence.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Recidiva Local de Neoplasia , Salmonella typhimurium , Glioblastoma/terapia , Glioblastoma/imunologia , Animais , Camundongos , Salmonella typhimurium/imunologia , Masculino , Recidiva Local de Neoplasia/prevenção & controle , Recidiva Local de Neoplasia/imunologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Humanos , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Piroptose , Imunidade Adaptativa , Imunidade Inata , Hidrogéis/química , Imunoterapia/métodos
3.
ACS Nano ; 18(13): 9511-9524, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38499440

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive and lethal form of human brain tumors. Dismantling the suppressed immune microenvironment is an effective therapeutic strategy against GBM; however, GBM does not respond to exogenous immunotherapeutic agents due to low immunogenicity. Manipulating the mitochondrial electron transport chain (ETC) elevates the immunogenicity of GBM, rendering previously immune-evasive tumors highly susceptible to immune surveillance, thereby enhancing tumor immune responsiveness and subsequently activating both innate and adaptive immunity. Here, we report a nanomedicine-based immunotherapeutic approach that targets the mitochondria in GBM cells by utilizing a Trojan-inspired nanovector (ABBPN) that can cross the blood-brain barrier. We propose that the synthetic photosensitizer IrPS can alter mitochondrial electron flow and concurrently interfere with mitochondrial antioxidative mechanisms by delivering si-OGG1 to GBM cells. Our synthesized ABBPN coloaded with IrPS and si-OGG1 (ISA) disrupts mitochondrial electron flow, which inhibits ATP production and induces mitochondrial DNA oxidation, thereby recruiting immune cells and endogenously activating intracranial antitumor immune responses. The results of our study indicate that strategies targeting the mitochondrial ETC have the potential to treat tumors with limited immunogenicity.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Barreira Hematoencefálica/patologia , Elétrons , Transporte Biológico , Neoplasias Encefálicas/genética , Mitocôndrias , Linhagem Celular Tumoral , Microambiente Tumoral
4.
Clin Cancer Res ; 30(5): 1009-1021, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109209

RESUMO

PURPOSE: Multiple myeloma is a plasma cell malignancy with an unmet clinical need for improved imaging methods and therapeutics. Recently, we identified CD46 as an overexpressed therapeutic target in multiple myeloma and developed the antibody YS5, which targets a cancer-specific epitope on this protein. We further developed the CD46-targeting PET probe [89Zr]Zr-DFO-YS5 for imaging and [225Ac]Ac-DOTA-YS5 for radiopharmaceutical therapy of prostate cancer. These prior studies suggested the feasibility of the CD46 antigen as a theranostic target in multiple myeloma. Herein, we validate [89Zr]Zr-DFO-YS5 for immunoPET imaging and [225Ac]Ac-DOTA-YS5 for radiopharmaceutical therapy of multiple myeloma in murine models. EXPERIMENTAL DESIGN: In vitro saturation binding was performed using the CD46 expressing MM.1S multiple myeloma cell line. ImmunoPET imaging using [89Zr]Zr-DFO-YS5 was performed in immunodeficient (NSG) mice bearing subcutaneous and systemic multiple myeloma xenografts. For radioligand therapy, [225Ac]Ac-DOTA-YS5 was prepared, and both dose escalation and fractionated dose treatment studies were performed in mice bearing MM1.S-Luc systemic xenografts. Tumor burden was analyzed using BLI, and body weight and overall survival were recorded to assess antitumor effect and toxicity. RESULTS: [89Zr]Zr-DFO-YS5 demonstrated high affinity for CD46 expressing MM.1S multiple myeloma cells (Kd = 16.3 nmol/L). In vitro assays in multiple myeloma cell lines demonstrated high binding, and bioinformatics analysis of human multiple myeloma samples revealed high CD46 expression. [89Zr]Zr-DFO-YS5 PET/CT specifically detected multiple myeloma lesions in a variety of models, with low uptake in controls, including CD46 knockout (KO) mice or multiple myeloma mice using a nontargeted antibody. In the MM.1S systemic model, localization of uptake on PET imaging correlated well with the luciferase expression from tumor cells. A treatment study using [225Ac]Ac-DOTA-YS5 in the MM.1S systemic model demonstrated a clear tumor volume and survival benefit in the treated groups. CONCLUSIONS: Our study showed that the CD46-targeted probe [89Zr]Zr-DFO-YS5 can successfully image CD46-expressing multiple myeloma xenografts in murine models, and [225Ac]Ac-DOTA-YS5 can effectively inhibit the growth of multiple myeloma. These results demonstrate that CD46 is a promising theranostic target for multiple myeloma, with the potential for clinical translation.


Assuntos
Mieloma Múltiplo , Masculino , Humanos , Animais , Camundongos , Mieloma Múltiplo/diagnóstico por imagem , Mieloma Múltiplo/tratamento farmacológico , Medicina de Precisão , Actínio , Radioisótopos , Compostos Radiofarmacêuticos , Zircônio , Linhagem Celular Tumoral , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Anticorpos , Proteína Cofatora de Membrana
5.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38463958

RESUMO

Despite the success of BCMA-targeting CAR-Ts in multiple myeloma, patients with high-risk cytogenetic features still relapse most quickly and are in urgent need of additional therapeutic options. Here, we identify CD70, widely recognized as a favorable immunotherapy target in other cancers, as a specifically upregulated cell surface antigen in high risk myeloma tumors. We use a structure-guided design to define a CD27-based anti-CD70 CAR-T design that outperforms all tested scFv-based CARs, leading to >80-fold improved CAR-T expansion in vivo. Epigenetic analysis via machine learning predicts key transcription factors and transcriptional networks driving CD70 upregulation in high risk myeloma. Dual-targeting CAR-Ts against either CD70 or BCMA demonstrate a potential strategy to avoid antigen escape-mediated resistance. Together, these findings support the promise of targeting CD70 with optimized CAR-Ts in myeloma as well as future clinical translation of this approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA