Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Ecotoxicol Environ Saf ; 269: 115733, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38016193

RESUMO

There is limited evidence linking antibiotic exposure, particularly from contaminated food or drinking water, to childhood obesity. The study aimed to investigate the association between urinary antibiotic levels and overweight/obesity in preschool children. In the case-control study, 121 overweight/obese preschoolers and 242 controls (aged 3-6 years) from eastern China were enrolled in 2022 based on age, sex, and study site matching. Overweight/obesity was determined using body mass index (BMI) and weight for height (WFH) criteria derived from national data. A total of 50 antibiotics from 8 categories were analyzed using ultra-performance liquid chromatography and tandem mass spectrometry (UPLC-MS/MS). We identified major dietary patterns using principal component analysis (PCA) and examined the associations of antibiotic exposure with childhood overweight/obesity using multivariate logistic regression. Twenty-four individual antibiotics were detected in more than 10 % of the samples, and overall detection rates were up to 100 %. Overweight/obese children had a higher exposure to veterinary antibiotics (VAs) than normal weight children. PCA analysis showed that children who were overweight/obese had higher scores of "Aquatic products preferred dietary pattern" and "Cereals preferred dietary pattern" compared to children with normal weight. Multivariate logistic regression analyses indicated that exposure to elevated levels of deoxytetracycline (OR: 1.72; 95 %CI: 1.00-2.93) and quinolones (OR: 1.63; 95 %CI: 1.04-2.57) was significantly related to an increased risk of BMI-based overweight/obesity. Quinolones exposure was also significantly associated with WFH-based overweight/obesity, primarily in boys. After adjustment for all covariates, higher exposure to ofloxacin (of the quinolones) was significantly related to overweight/obesity in girls. Exposure to certain antibiotics, especially quinolones, may increase the risk of overweight/obesity in preschoolers. More prospective, well-designed studies are needed to clarify these findings.


Assuntos
Obesidade Infantil , Quinolonas , Criança , Masculino , Feminino , Humanos , Pré-Escolar , Sobrepeso/induzido quimicamente , Sobrepeso/epidemiologia , Obesidade Infantil/induzido quimicamente , Obesidade Infantil/epidemiologia , Monitoramento Biológico , Antibacterianos , Estudos Prospectivos , Estudos de Casos e Controles , Cromatografia Líquida , Espectrometria de Massas em Tandem , China/epidemiologia
2.
Ecotoxicol Environ Saf ; 280: 116561, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38850706

RESUMO

Imidacloprid (IMI), a commonly utilized neonicotinoid insecticide, has been identified to adversely impact glucose homeostasis. Pregnant women are believed to be more sensitive to toxins than non-pregnant women, and the impact of IMI exposure on gestational hyperglycemia remain unclear. To explore the impact, pregnant mice fed a high-fat diet were exposed to different doses (0.06, 0.6, 6 mg/kg bw/day) of IMI by gavage. Glucose homeostasis-related parameters were measured. The glucose homeostasis influenced by IMI treatment was explored through integrating gut microbiota, metabolomic and transcriptomic analysis. Results showed that IMI-H (6 mg/kg bw/day) exposure notably restricted gestational weight gain and perturbed glucose homeostasis characterized by reduced glucose tolerance and insulin sensitivity, alongside elevated levels of fasting blood glucose and insulin. Multi-omics analysis revealed that IMI-H exposure induced significant changes in the richness and composition of the gut microbiome. The metabolite profiles of serum samples and cecal contents, and transcriptome of liver and ileum were all affected by IMI-H treatment. The altered gut microbiota, metabolites and genes exhibited significant correlations with glucose homeostasis-related parameters. These differential metabolites and genes were implicated in various metabolic pathways including bile secretion, glucagon signaling pathway, lipid metabolism, fatty acid metabolism. Significant correlations were observed between the altered gut microbiota and caecum metabolome as well as liver transcriptome. For example, the abundance of Oscillibacter was strongly correlated with gut microflora-related metabolites (Icosenoic acid, Lysosulfatide, and fluticasone) and liver differential genes (Grin3b, Lifr, and Spta1). Together, IMI exposure resulted in significant changes in microbial composition, along with alterations in certain metabolites and genes associated with metabolic process, which may promote gestational hyperglycemia.


Assuntos
Microbioma Gastrointestinal , Hiperglicemia , Inseticidas , Neonicotinoides , Nitrocompostos , Neonicotinoides/toxicidade , Feminino , Animais , Gravidez , Nitrocompostos/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Hiperglicemia/induzido quimicamente , Inseticidas/toxicidade , Glicemia/efeitos dos fármacos , Metabolômica , Transcriptoma/efeitos dos fármacos , Diabetes Gestacional/induzido quimicamente , Dieta Hiperlipídica , Multiômica
3.
Ecotoxicol Environ Saf ; 279: 116472, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38761496

RESUMO

Exposure to metals/metalloids is reported to potentially influence semen quality. While most studies have focused on single metal impacts, the link between exposure to multiple metals and semen quality has remained less explored. The study aimed to investigate the effects of both individual and mixed metal/metalloid exposure on semen quality. A total of 330 men were recruited from three reproductive centers in eastern China. Seminal plasma levels of 25 metals/metalloids and sperm parameters were determined. We used the Generalized Linear Model (GLM) and Restricted Cubic Spline (RCS) to assess the relationships between single metals/metalloids and semen quality. The weighted quantile sum (WQS) models were then applied to evaluate the combined effect of all these metals/metalloids. We observed positive associations of exposure to lithium (Li), zinc (Zn), and magnesium (Mg) with an increased risk of below reference values for progressive motility and total motility using a logistic regression model (P < 0.05). Additionally, our results also revealed a significant inverse relationship between aluminum (Al) and both sperm concentration and count, while cobalt (Co) demonstrated a positive association with sperm concentration (P < 0.05). Notably, the WQS model indicated a significant positive association between exposure to metal/metalloid mixtures and the risk of abnormal progressive motility (OR: 1.57; 95%CI: 1.10, 2.24) and abnormal total motility (OR: 1.53; 95%CI: 1.06, 2.19), with this association primarily driven by Li, Mg, and Zn. In summary, our findings indicate that exposure to metal/metalloid mixtures might have an adverse effect on semen quality.


Assuntos
Metaloides , Metais , Análise do Sêmen , Sêmen , Masculino , Sêmen/efeitos dos fármacos , Sêmen/química , Metaloides/análise , Estudos Transversais , Humanos , Adulto , Metais/análise , Metais/sangue , China , Poluentes Ambientais/sangue , Motilidade dos Espermatozoides/efeitos dos fármacos , Contagem de Espermatozoides , Adulto Jovem
4.
Ecotoxicol Environ Saf ; 268: 115726, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37992646

RESUMO

Exposure to metal mixtures may affect children's health but the conclusions are controversial. We aimed to investigate the associations of metal mixture exposure with children's physical and behavioral development. 15 metals were detected in the urine samples of 278 preschoolers aged 3-6 years from eastern China. Multiple linear models and restricted cubic splines were used to evaluate dose-response relationships between single metal and children's physical and behavioral development. The Bayesian Kernel Machine Regression (BKMR) models, the weighted quantile sum (WQS) models and Quantile G-Computation were applied to evaluate the joint effects of metal mixtures. The results showed that arsenic (As) was negatively associated with z score of height for age (HAZ) in individual-metal models [ß (95%CI): - 0.22 (-0.38, -0.06), P = 0.006]. Concerning children's behavioral development, multiple-metal models demonstrated a negative association with strontium (Sr) [ß (95%CI): - 0.82 (-1.38, -0.26), P = 0.004], and a positive association with tin (Sn) [ß (95%CI): 0.69 (0.16, 1.21), P = 0.010]. Notably, these associations remained significant or suggestive even after adjustments for multiple tests, sensitivity analyses, and application of different statistical models, including BKMR, WQS, and Quantile G-Computation. Furthermore, the study identified a negative joint effect of the metal mixture on HAZ, as demonstrated by BKMR and Quantile G-Computation models, with As playing an irreplaceable role in this observed impact. In summary, exposure to As appears to have adverse effects on HAZ, while exposure to Sn may hinder children's behavioral development. Conversely, exposure to Sr may have a protective effect on children's behavioral development. Additionally, the combined impact of metal mixtures is implicated in potentially impairing children's physical development, particularly in terms of HAZ.


Assuntos
Arsênio , Exposição Ambiental , Humanos , Criança , Pré-Escolar , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Monitoramento Biológico , Teorema de Bayes , Metais/toxicidade , Metais/análise , Arsênio/toxicidade , Arsênio/análise , Estrôncio/análise , China
5.
World J Microbiol Biotechnol ; 33(12): 213, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29147865

RESUMO

This study investigated the effects of dietary fresh fermented soybean meal (FSM) on the intestinal microbiota and metabolites, bacterial enzyme activity and intestinal morphology of weaning piglets. A total of 64 weaned piglets were randomly allocated into two treatments. A corn-soybean-based diet was used as the control and other treatment was fed the same basal diet containing 15% fresh FSM. The feeding trial lasted for 21 days. Bacterial community structure and diversity in the cecum and colon were assessed using pyrosequencing-based analysis. The results showed that the phylum level, Firmicutes, Bacteroidetes, Proteobacteria and Tenericutes were dominant in the cecum or colon. Gut Firmicutes increased, while Bacteroidetes and Proteobacteria decreased in the fresh FSM-fed piglets. At the genus level, the relative abundances of butyrate-producing bacteria, Lactobacillus and Prevotella were higher in both cecum and colon of fresh FSM fed piglets. Meanwhile, fresh FSM could promote the development of intestinal morphological and reduce the incidence of diarrhea. The results indicated that fresh FSM might change intestinal function by influencing intestinal microenvironment.


Assuntos
Bactérias/classificação , Glycine max , Intestinos/anatomia & histologia , Ração Animal , Animais , Bactérias/enzimologia , Bactérias/isolamento & purificação , Biodiversidade , Butiratos/metabolismo , Fermentação , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Microbiota , Filogenia , Suínos , Desmame
6.
Curr Pharm Des ; 30(15): 1194-1199, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584550

RESUMO

BACKGROUND: After implementing the two-child policy, more Chinese women who had a previous delivery had their second child. Nevertheless, the impacts of parity on Gestational Diabetes (GDM) and macrosomia have not been fully confirmed. Therefore, we aimed to analyse the characteristics of pregnancy by parity and evaluate the association of parity with risks of GDM/macrosomia in a Chinese population. METHODS: A total of 193,410 pregnant women (including 148,293 primiparae and 45,117 multiparae) with complete information were included. Univariate and multivariate logistic regression analyses were used to examine the association between parity and risks of GDM/macrosomia. RESULTS: With the gradual implementation of the two-child policy, the proportion of multiparae increased rapidly and then decreased slightly. Multiparae were more likely to be older and have higher intrapartum BMI, as compared to primiparae (P < 0.001). Univariate regression analyses suggested that parity could increase the risks of GDM and macrosomia; while after adjustment, the association between parity and GDM risk disappeared, and the effects of parity on macrosomia risk and birth weight of babies were also weakened. Further, stratified analysis showed that parity only increased the risk of GDM in women over 30 years, and the effects of parity on macrosomia risk and birth weight were more pronounced among women over 30 years compared to women under 30 years. CONCLUSION: Parity was not associated with GDM risk, but mildly associated with macrosomia risk. Particular attention should be paid to multiparae with advanced age to reduce the risks of GDM and macrosomia.


Assuntos
Diabetes Gestacional , Macrossomia Fetal , Paridade , Humanos , Feminino , Gravidez , Diabetes Gestacional/epidemiologia , Macrossomia Fetal/epidemiologia , China/epidemiologia , Estudos Retrospectivos , Adulto , Fatores de Risco , Estudos de Coortes
7.
Chemosphere ; 332: 138866, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37164202

RESUMO

Except for known sociodemographic factors, long-term exposure to environmental pollutants has been shown to contribute to the development of gestational diabetes mellitus (GDM), but the conclusions remain controversial. To provide a comprehensive overview of the association between environmental pollutants and GDM, we performed a systematic review and meta-analysis. Several electronic databases (PubMed, Embase, Web of Science, Medline and Cochrane) were searched for related epidemiological and experimental studies up to September 2022. For epidemiological studies, a meta-analysis was carried out to appraise the effect of environmental pollutants, including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), per- and polyfluoroalkyl substances (PFASs), phenols, phthalates (PAEs), polybrominated diphenyl ethers (PBDEs) and parabens exposure on GDM. Moreover, we also summarized possible biological mechanisms linking pollution exposure and GDM based on the included experimental studies. A total of 80 articles were enrolled, including 38 epidemiological studies and 42 experimental studies. Meta-analysis results showed that exposure to PAEs [OR (95%CI) = 1.07 (1.00, 1.14)], PFASs [OR (95%CI) = 1.10 (1.01, 1.19)], as well as PCBs [OR (95%CI) = 1.18 (1.02, 1.36)] and PBDEs [OR (95%CI) = 1.33 (1.17, 1.50)] significantly increased the risk of GDM, but no significant effects were found for phenols, OCPs, and parabens. In addition, experimental studies suggested that the potential biological mechanisms of environmental pollutants contributing to GDM may involve insulin resistance, ß-cell dysfunction, neurohormonal dysfunction, inflammation, oxidative stress, epigenetic modification, and alterations in gut microbiome. In conclusion, long-term environmental pollutants exposure may induce the development of GDM, and there may be a synergistic effect between the homologs. However, studies conducted on the direct biological link between environmental pollutants and GDM were few. More prospective studies and high-quality in vivo and in vitro experiments were needed to investigate the specific effects and mechanisms.


Assuntos
Diabetes Gestacional , Poluentes Ambientais , Fluorocarbonos , Hidrocarbonetos Clorados , Praguicidas , Bifenilos Policlorados , Gravidez , Feminino , Humanos , Diabetes Gestacional/induzido quimicamente , Diabetes Gestacional/epidemiologia , Poluentes Ambientais/toxicidade , Bifenilos Policlorados/toxicidade , Estudos Prospectivos , Éteres Difenil Halogenados/toxicidade , Parabenos , Exposição Ambiental , Fenóis/toxicidade
8.
Hum Fertil (Camb) ; 26(6): 1477-1484, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37668066

RESUMO

The effect of COVID-19 pandemic on early pregnancy outcomes among women undergoing frozen-thawed embryo transfer (FET) remains unclear. We aimed to evaluate whether early pregnancy outcomes were altered in patients undergoing FET during the pandemic. In this retrospective cohort study, women conceived through FET in 2016-2021 from two hospitals in China were included. The early pregnancy outcomes were compared using Logistic regression model, including biochemical pregnancy rate (BPR), clinical pregnancy rate (CPR), and early pregnancy loss rate (EPLR). A total of 16,669 (67.2%) and 6,113 (26.8%) FET cycles enrolled before and during the pandemic, respectively. Univariate analyses showed that women undergoing FET during the pandemic had significantly increased BPR (72.9% vs. 69.7%) and CPR (59.5% vs. 55.0%), and significantly decreased EPLR (13.7% vs. 16.7%) compared to pre-pandemic (all P < 0.001). Moreover, after adjustment, the results were in accordance with univariate analysis for CPR [adjusted OR (95%CI) = 1.08 (1.01-1.14)] and EPLR [adjusted OR (95%CI) = 0.82 (0.73-0.91)], while the statistical significance between BPR and the pandemic disappeared. In summary, women conceived by FET did not have a reduced possibility of clinical pregnancy and a higher risk of early pregnancy loss during the pandemic compared with the pre-pandemic.


Assuntos
Aborto Espontâneo , COVID-19 , Gravidez , Humanos , Feminino , Resultado da Gravidez , Aborto Espontâneo/etiologia , Pandemias , Taxa de Gravidez , Estudos Retrospectivos , Transferência Embrionária/métodos , Criopreservação/métodos
9.
Chemosphere ; 339: 139640, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37499805

RESUMO

Polychlorinated Biphenyls (PCBs) and Polybrominated Diphenyl Ethers (PBDEs) are extensively present in humans and may disturb glucose metabolism during pregnancy. However, previous reports on the associations between PCBs/PBDEs levels and gestational diabetes mellitus (GDM) have been inconsistent. We performed a nested case-control study to measure the serum levels of 6 PCB and 7 PBDE congeners in early pregnancy, and to assess their associations with GDM risk and blood glucose levels. Totally, 208 serum samples (104 GDM cases and 104 controls) were included based on a prospective cohort which was carried out in Jiangsu province, China, from 2020 to 2022. The results showed that PCB-153 was the major PCB congener, whereas PBDE-47 was the predominant PBDE congener. The continuous concentrations of PCB-153, PBDE-28, and total PCB were significantly related to an increased risk of GDM, with adjusted ORs (95%CI) of 1.25 (1.04-1.50), 1.19 (1.02-1.39), and 1.37 (1.05-1.79), respectively. Potential dose-response relationships were also observed between serum levels of PCB-153 (P = 0.011), PBDE-28 (P = 0.028), total PCB (P = 0.048), and total PCB/PBDE (P = 0.010) and GDM risk. Moreover, PCB-153, PBDE-28 and total PCB levels were positively related to 1-h OGTT blood glucose (adjusted ßPCB-153: 0.14, 95%CI: 0.00-0.28; adjusted ßPBDE-28: 0.20, 95%CI: 0.08-0.32; adjusted ßtotal PCB: 0.30, 95%CI: 0.09-0.50), whereas none of the PCBs/PBDEs were statistically related to fasting blood glucose and 2-h OGTT blood glucose (all P > 0.05). Further meta-analysis also supported the association of PCBs exposure with GDM risk. Our study provides further evidence that PCBs/PBDEs exposure may increase GDM risk during pregnancy.


Assuntos
Diabetes Gestacional , Poluentes Ambientais , Bifenil Polibromatos , Bifenilos Policlorados , Gravidez , Feminino , Humanos , Bifenilos Policlorados/análise , Éteres Difenil Halogenados/análise , Poluentes Ambientais/análise , Estudos de Casos e Controles , Estudos Prospectivos , Glicemia , Bifenil Polibromatos/análise
10.
Environ Sci Pollut Res Int ; 30(34): 82547-82559, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37326733

RESUMO

Despite limited biomonitoring studies suggesting extensive antibiotic exposure in general population, the body burden of antibiotics in young children and their potential health risks remain unclear. To assess the antibiotic exposure levels in young children, 508 preschoolers aged 3-6 years were recruited from eastern China in 2022, and a total of 50 representative antibiotics from 8 categories, including 17 human antibiotics (HAs), 4 antibiotics preferred as HAs (PHAs), 16 veterinary antibiotics (VAs), and 13 antibiotics preferred as VAs (PVAs), were analyzed by UPLC-MS/MS. Hazard quotient (HQ) and hazard index (HI) were calculated to evaluate the health risks, and multivariate logistic regression was applied to examine diet with antibiotic exposure. Our results showed that there were 41 antibiotics detected in children's urine, and the overall detection frequency was as high as 100%. Sulfonamides, macrolides, ß-lactams, quinolones, and azoles were the predominant categories of antibiotic detected. Among the studied children, 6.5% had a sum of estimated daily intake (EDI) of all VAs and PVAs larger than 1 µg/kg/day. Notably, 10.0% of the children had a microbiological HI value exceeding 1, primarily contributed by ciprofloxacin. Children with higher consumption of seafood had a relatively increased exposure to multiple categories of antibiotics, including HAs, VAs, quinolones, azoles, and others. Principal component analysis suggested that "Aquatic products and viscera preferred dietary pattern" scores were positively correlated with the exposure levels of ciprofloxacin (OR: 1.23; 95% CI: 1.02-1.47) and carbadox (OR: 1.32; 95% CI: 1.10-1.59), and a relatively increased exposure of PHAs was realized in children with higher "Meat-egg preferred dietary pattern" scores (OR: 1.24; 95% CI: 1.03-1.50). In conclusion, there was a widespread exposure to antibiotics among preschool children from eastern China, and children who consumed more animal-derived foods may had an increased exposure to antibiotics.


Assuntos
Antibacterianos , Quinolonas , Animais , Humanos , Pré-Escolar , Antibacterianos/análise , Cromatografia Líquida , Espectrometria de Massas em Tandem , China , Medição de Risco , Ciprofloxacina , Azóis
11.
Biol Trace Elem Res ; 184(1): 92-98, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29019078

RESUMO

The study was conducted to investigate the effect of chitosan-zinc chelate (CS-Zn) on TLR4-NF-κB signaling pathway and cell death-associated proteins in a weanling pig model. A total of 90 weaned piglets were allotted to three dietary treatments (the dietary treatments were as follows: (1) experimental diet with supplemental ZnSO4 (150 mg Zn/kg diet), (2) experimental diet with supplemental CS-Zn (150 mg Zn/kg diet), and (3) experimental diet with a supplemental mixture of chitosan and ZnSO4 (150 mg/kg Zn; the content of chitosan was equal to CS-Zn, which is according to molar basis)). The feeding trial lasted 30 days. The results showed that compared with ZnSO4 or CS+ZnSO4, CS-Zn decreased the expressions of the cell death-associated proteins Beclin-1, and Cleaved-Caspase3 and the ratio of LC3II/LC3I. The intestinal expressions of TLR4 and its downstream signals NF-κB, IKKß, and IκBα were down-regulated simultaneously. Moreover, the contents of pro-inflammatory cytokines IL-2, TNF-α, and IFN-γ were decreased. The results indicated that as organic zinc source, CS-Zn was more effective than ZnSO4 and the mixture of chitosan and ZnSO4 for inhibiting inflammatory response and decreasing the expressions of proteins associated with cell death. The great anti-inflammatory effect of CS-Zn was modulated by inhibiting the TLR4-NF-κB signaling pathway, and the effect of CS-Zn on down-regulating the expression of cell death-associated proteins might also closely be associated with the TLR4-NF-κB signaling pathway.


Assuntos
Quitosana/farmacologia , Suplementos Nutricionais , NF-kappa B/genética , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/genética , Sulfato de Zinco/farmacologia , Zinco/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Quitosana/química , Interleucina-2/metabolismo , NF-kappa B/metabolismo , Suínos , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Desmame , Zinco/química , Sulfato de Zinco/química
12.
Front Microbiol ; 9: 1988, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30210470

RESUMO

This study investigated the effects of dietary essential oils (EOs) on intestinal microbial composition and metabolic profiles in weaned piglets. The piglets were fed the same basal diet supplemented with EOs (EO) or without EOs (Con) in the current study. The results showed that the body weight gain was significantly increased, while the diarrhea incidence was significantly reduced in the EO group. In addition, EOs could modify the intestinal microbial composition of weaned piglets. The relative abundances of some beneficial bacterial species such as Bacilli, Lactobacillales, Streptococcaceae, and Veillonellaceae were significantly increased in the EO group. Metabolomics analysis indicated that protein biosynthesis, amino acid metabolism, and lipid metabolism were enriched in the EO group. And correlation analysis demonstrated that some gut bacterial genera were highly correlated with altered gut microbiota-related metabolites. Taken together, this study indicated that dietary EOs not only altered microbial composition and function but modulated the microbial metabolic profiles in the colon, which might help us understand EOs' beneficial effects on intestinal health of weaned piglets.

13.
J Crohns Colitis ; 12(11): 1359-1374, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30010734

RESUMO

BACKGROUND AND AIMS: Faecal microbiota transplantation [FMT] has shown promise as a treatment for inflammatory bowel disease [IBD]. Using a piglet model, our previous study indicated that exogenous faecal microbiota can increase the expressions of tight junction proteins, mucin and antimicrobial peptide in the intestinal mucosa, suggesting a beneficial effect of FMT on gut barrier and gastrointestinal health. However, specific connections between FMT-induced microbial changes and modulation of the intestinal barrier remain to be fully illustrated. Here, we aimed to determine the potential role of metabolic function of gut microbiota in the beneficial effects of FMT. METHODS: The influence of FMT on the maintenance of intestinal homeostasis was assessed by early-life gut microbiota intervention on newborn piglets and subsequent lipopolysaccharide [LPS] challenge. Analysis of the gut microbiome and metabolome was carried out by 16S rRNA gene sequencing and multiple mass spectrometry platforms. RESULTS: FMT modulated the diversity and composition of colonic microbiota and reduced the susceptibility to LPS-induced destruction of epithelial integrity and severe inflammatory response. Metabolomic analysis revealed functional changes of the gut metabolome along with a significant increase of the typical microbiota-derived tryptophan catabolite indole-3-acetic acid in the colonic lumen. In concordance with the metabolome data, metagenomics prediction analysis based on 16S rRNA gene sequencing also demonstrated that FMT modulated the metabolic functions of gut microbiota associated with indole alkaloid biosynthesis, cytochrome P450 and intestinal homeostasis, which coincided with up-regulation of cytokine interleukin-22 and enhanced activation of aryl hydrocarbon receptor in the recipient colon. CONCLUSIONS: Our data reveal a regulatory effect of FMT on tryptophan metabolism of gut microbiota in the recipient colon, which may play a potential role in maintenance of the intestinal barrier.


Assuntos
Colite/prevenção & controle , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/patologia , Triptofano/metabolismo , Animais , Colite/induzido quimicamente , Colite/patologia , Homeostase , Ácidos Indolacéticos/metabolismo , Interleucinas/metabolismo , Mucosa Intestinal/metabolismo , Lipopolissacarídeos , Espectrometria de Massas , Metaboloma , RNA Ribossômico 16S/análise , Receptores de Hidrocarboneto Arílico/metabolismo , Suínos , Interleucina 22
14.
mSystems ; 3(5)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30320222

RESUMO

Fecal microbiota transplantation (FMT) is one of the most effective ways to regulate the gut microbiota. Here, we investigated the effect of exogenous fecal microbiota on gut function from the perspective of analysis of the mucosal proteomes in a piglet model. A total of 289 differentially expressed proteins were annotated with 4,068 gene ontology (GO) function entries in the intestinal mucosa, and the levels of autophagy-related proteins in the forkhead box O (FoxO) signaling pathway were increased whereas the levels of proteins related to inflammation response were decreased in the recipient. Then, to assess the alleviation of epithelial injury in the Escherichia coli K88-infected piglets following FMT, intestinal microbiome-metabolome responses were determined. 16S rRNA gene sequencing showed that the abundances of beneficial bacteria, such as Lactobacillus and Succinivibrio, were increased whereas those of Enterobacteriaceae and Proteobacteria bacteria were decreased in the infected piglets following FMT. Metabolomic analysis revealed that levels of 58 metabolites, such as lactic acid and succinic acid, were enhanced in the intestinal lumen and that seven metabolic pathways, such as branched-chain amino acid metabolism pathways, were upregulated in the infected piglets following FMT. In concordance with the metabolome data, results of metagenomics prediction analysis also demonstrated that FMT modulated the metabolic functions of gut microbiota associated with linoleic acid metabolism. In addition, intestinal morphology was improved, a result that coincided with the decrease of intestinal permeability and the enhancement of mucins and mucosal expression of tight junction proteins in the recipient. Taken together, the results showed that FMT triggered intestinal mucosal protective autophagy and alleviated gut barrier injury through alteration of the gut microbial structure. IMPORTANCE The gut microbiota plays a crucial role in human and animal health, and its disorder causes multiple diseases. Over the past decade, FMT has gained increasing attention due to the success in treating Clostridium difficile infection (CDI) and inflammatory bowel disease (IBD). Although FMT appears to be effective, how FMT functions in the recipient remains unknown. Whether FMT exerts this beneficial effect through a series of changes in the host organism caused by alteration of gut microbial structure is also not known. In the present study, newborn piglets and E. coli K88-infected piglets were selected as models to explore the interplay between host and gut microbiota following FMT. Our results showed that FMT triggered intestinal mucosal autophagy and alleviated gut barrier injury caused by E. coli K88. This report provides a theoretical basis for the use of FMT as a viable therapeutic method for gut microbial regulation.

15.
J Zhejiang Univ Sci B ; 18(12): 1083-1092, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29204988

RESUMO

This study was conducted to investigate the effects of fresh fermented soybean meal (FSM) on the growth performance of nursery piglets, nitrogen excretion in feces, and the concentrations of ammonia (NH3) and particulate matter (PM) in the piggery. A total of 472 nursery piglets (Landrace×Yorkshire, (16.3±0.36) kg body weight) were randomly allocated into two treatments with 236 pigs in each treatment. The pigs were fed the basal diet without fresh FSM (control) or diet containing 10% (100 g/kg) fresh FSM (FSM group), and the crude protein content of the two groups was consistent. The feeding trial lasted for 28 d. The results showed that the pigs fed fresh FSM had increased (P<0.05) average daily gain (ADG) compared with the control. There was no significant difference (P>0.05) in feed to gain ratio (F:G) between the two groups. During the whole experiment, the concentration of NH3 in the piggery decreased (P<0.05) by 19.0%, and the concentrations of PM (PM10 and PM2.5) in the piggery decreased (P<0.05) by 19.9% and 11.6%, respectively, in the FSM group, compared with the control. The ammonia nitrogen and nitrite content in feces increased (P<0.05) by 32.9% and 28.4%, respectively, in the FSM group. The fecal pH declined (P<0.05) significantly in the FSM group compared with the control. At the end of experiment, total protein (TP) concentration was increased (P<0.05) significantly and blood urea nitrogen (BUN) concentration was decreased (P<0.05) for pigs fed the diet with fresh FSM. The results indicated that dietary fresh FSM not only improved the growth performance of nursery piglets, but also reduced the NH3 concentration in the piggery due to nitrogen conversion, and decreased the concentrations of PM10 and PM2.5 in the piggery.


Assuntos
Amônia/química , Ração Animal , Dieta/veterinária , Glycine max , Nitrogênio/química , Criação de Animais Domésticos , Fenômenos Fisiológicos da Nutrição Animal , Animais , Animais Recém-Nascidos , Proteínas Alimentares , Suplementos Nutricionais , Fezes , Feminino , Fermentação , Concentração de Íons de Hidrogênio , Masculino , Material Particulado , Suínos , Ureia/química
16.
Front Microbiol ; 8: 2663, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375527

RESUMO

This study was conducted to investigate the effect of exogenous fecal microbiota transplantation on gut bacterial community structure, gut barrier and growth performance in recipient piglets. Twelve litters of Duroc × Landrace × Yorkshire piglets of the same birth and parity were weighed and divided into two groups. One group (recipient piglets) was inoculated orally with fecal microbiota suspension of healthy adult Jinhua pigs daily from day 1 to day 11. The other (control) was given orally the same volume of sterile physiological saline at the same time. The experiment lasted 27 days. The results showed that the relative abundance of Firmicutes, Prevotellaceae, Lachnospiraceae, Ruminococcus, Prevotella, and Oscillospira in the colon of recipient piglets was increased. Proteobacteria, Fusobacteriaceae, Clostridiaceae, Pasteuriaceae, Alcaligenaceae, Bacteroidaceae, Veillonellaceae, Sutterella, Escherichia, and Bacteroides in the colon of recipient piglets were decreased. An average daily weight gain of recipient piglets was increased, and diarrhea incidence of the recipient was decreased during the trial. Intestinal morphology and tight junction barrier of recipient piglets were improved. The optical density of sIgA+ cells, the number of goblet cells and relative expressions of MUC2 in the intestinal mucosa of recipient piglets were enhanced. Protein expressions of ß-defensin 2 and mRNA expressions of TLR2 and TLR4 in the intestinal mucosa of recipient piglets were also increased. These findings supported that the exogenous fecal microbiota had significant effects on animal's growth performance, intestinal barrier function, and innate immune via modulating the composition of the gut microbiota.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA