RESUMO
BACKGROUND: The Pseudorabies Virus (PRV) leading to pseudorabies and causes huge economic losses in pig industry. The development of novel PRV variations has diminished the efficacy of traditional vaccinations, and there is yet no medication that can stop the spread of PRV infection. Therefore, PRV eradication is challenging. Oregano essential oil, the plant-based ingredient for medication feed have been shown to has strong anti-herpesvirus activity, but no anti-PRV function has been reported. RESULTS: The current study assessed the anti-pseudorabies virus (PRV) activity of oregano essential oil and explored its mechanisms and most effective components against PRV. Our in vivo findings demonstrated that oregano essential oil could decrease the PRV load in tissues, mitigate tissue lesions, and enhance the survival rate of mice. The potential antiviral mechanism involves augmenting humoral and cellular immune responses in PRV-infected mice. To further investigate the most effective components of oregano essential oil against PRV, an in vitro study was conducted, revealing that oregano essential oil and its main constituents, carvacrol and thymol, all diminished PRV intracellular proliferation in vitro. Carvacrol exhibited the most potent anti-PRV effect, serving as the primary contributor to oregano essential oil's anti-PRV activity. The mechanisms underlying carvacrol's anti-PRV properties include the upregulation of cytokines TNF-α, IFN-ß, IFN-γ, IL-12, and the inhibition of PRV-induced apoptosis in BHK-21 cells. CONCLUSIONS: Our study provides an effective drug for the prevention and control of PRV infection.
Assuntos
Antivirais , Herpesvirus Suídeo 1 , Óleos Voláteis , Origanum , Pseudorraiva , Animais , Óleos Voláteis/farmacologia , Origanum/química , Camundongos , Herpesvirus Suídeo 1/efeitos dos fármacos , Antivirais/farmacologia , Pseudorraiva/tratamento farmacológico , Pseudorraiva/virologia , Cimenos/farmacologia , Timol/farmacologia , Citocinas/metabolismo , Linhagem Celular , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Feminino , Camundongos Endogâmicos BALB C , Carga Viral/efeitos dos fármacos , Suínos , Modelos Animais de Doenças , Óleos de Plantas/farmacologiaRESUMO
Resolvin (Rv) and lipoxin (Lx) play important regulative roles in the development of several inflammation-related diseases. The dysregulation of their metabolic network is believed to be closely related to the occurrence and development of asthma. The Hyssopus Cuspidatus Boriss extract (SXCF) has long been used as a treatment for asthma, while the mechanism of anti-inflammatory and anti-asthma action targeting Rv and Lx has not been thoroughly investigated. In this study, we aimed to investigate the effects of SXCF on Rv, Lx in ovalbumin (OVA)-sensitized asthmatic mice. The changes of Rv, Lx before and after drug administration were analyzed based on high sensitivity chromatography-multiple response monitoring (UHPLC-MRM) analysis and multivariate statistics. The pathology exploration included behavioral changes of mice, IgE in serum, cytokines in BALF, and lung tissue sections stained with H&E. It was found that SXCF significantly modulated the metabolic disturbance of Rv, Lx due to asthma. Its modulation effect was significantly better than that of dexamethasone and rosmarinic acid which is the first-line clinical medicine and the main component of Hyssopus Cuspidatus Boriss, respectively. SXCF is demonstrated to be a potential anti-asthmatic drug with significant disease-modifying effects on OVA-induced asthma. The modulation of Rv and Lx is a possible underlying mechanism of the SXCF effects.
Assuntos
Antiasmáticos , Asma , Lipoxinas , Camundongos , Animais , Lipoxinas/farmacologia , Asma/induzido quimicamente , Asma/tratamento farmacológico , Asma/metabolismo , Antiasmáticos/efeitos adversos , Pulmão/metabolismo , Citocinas/metabolismo , Extratos Vegetais/farmacologia , Camundongos Endogâmicos BALB C , Modelos Animais de DoençasRESUMO
As an ancient species with both conservation and commercial value, Sturgeon's inflammatory regulation mechanism is a research point. Nucleotide-binding and oligomerization domain-containing proteins 1 and 2 (NOD1/2) are classical intracellular pattern recognition receptors (PRRs) in immunity of anti-bacterial infection. However, the characterization and function of NOD1/2 in Sturgeon are still unclear. In this study, we analyzed the synteny relationship of NOD1/2 genes between Acipenser ruthenus and representative fishes at the genome-level. Results showed that the ArNOD2 collinear genes pair was present in all representative fishes. The duplicated ArNOD1/2 genes were under purifying selection during evolution as indicated by their Ka/Ks values. To explore the function of NOD1/2, we further investigated their expression patterns and the effects of pathogenic infection, PAMPs treatment, and siRNA interference in Acipenser baerii, the sibling species of A. ruthenus. Results showed that both AbNOD1/2 were expressed at early developmental stages and in different tissues. Pathogenic infection in vivo and PAMPs treatment in vitro demonstrated that AbNOD1/2 could respond to pathogen stimulation. siRNA interference with AbNOD1/2 inhibited expression levels of RIPK2 and inflammatory cytokines compared to the control group after iE-DAP or MDP treatment. This study hinted that the AbNOD1/2 could stimulate the inflammatory cytokines response during evolutionary processes.
Assuntos
Infecções Bacterianas , Moléculas com Motivos Associados a Patógenos , Animais , Peixes/genética , Citocinas , RNA Interferente Pequeno , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD2/genéticaRESUMO
Infection with Vibrio mimicus in the Siluriformes has demonstrated a rapid and high infectivity and mortality rate, distinct from other hosts. Our earlier investigations identified necrosis, an inflammatory storm, and tissue remodeling as crucial pathological responses in yellow catfish (Pelteobagrus fulvidraco) infected with V. mimicus. The objective of this study was to further elucidate the impact linking these pathological responses within the host during V. mimicus infection. Employing metabolomics and transcriptomics, we uncovered infection-induced dense vacuolization of perimysium; Several genes related to nucleosidase and peptidase activities were significantly upregulated in the skin and muscles of infected fish. Concurrently, the translation processes of host cells were impaired. Further investigation revealed that V. mimicus completes its infection process by enhancing its metabolism, including the utilization of oligopeptides and nucleotides. The high susceptibility of yellow catfish to V. mimicus infection was associated with the composition of its body surface, which provided a microenvironment rich in various nucleotides such as dIMP, dAMP, deoxyguanosine, and ADP, in addition to several amino acids and peptides. Some of these metabolites significantly boost V. mimicus growth and motility, thus influencing its biological functions. Furthermore, we uncovered an elevated expression of gangliosides on the surface of yellow catfish, aiding V. mimicus adhesion and increasing its infection risk. Notably, we observed that the skin and muscles of yellow catfish were deficient in over 25 polyunsaturated fatty acids, such as Eicosapentaenoic acid, 12-oxo-ETE, and 13-Oxo-ODE. These substances play a role in anti-inflammatory mechanisms, possibly contributing to the immune dysregulation observed in yellow catfish. In summary, our study reveals a host immune deviation phenomenon that promotes bacterial colonization by increasing nutrient supply. It underscores the crucial factors rendering yellow catfish highly susceptible to V. mimicus, indicating that host nutritional sources not only enable the establishment and maintenance of infection within the host but also aid bacterial survival under immune pressure, ultimately completing its lifecycle.
Assuntos
Peixes-Gato , Doenças dos Peixes , Vibrioses , Vibrio mimicus , Animais , Peixes-Gato/imunologia , Peixes-Gato/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Vibrioses/veterinária , Vibrioses/imunologia , Vibrio mimicus/imunologia , Suscetibilidade a Doenças/veterinária , Suscetibilidade a Doenças/imunologia , Epiderme/imunologia , Epiderme/microbiologia , NutrientesRESUMO
The immune system of bony fish closely resembles that of mammals, comprising both specific (adaptive) and non-specific (innate) components. Notably, the mucosa-associated lymphoid tissue (MALT) serves as the first line of defense within the non-specific immune system, playing a critical role in protecting these aquatic organisms against invading pathogens. MALT encompasses a network of immune cells strategically distributed throughout the gills and intestines, forming an integral part of the mucosal barrier that interfaces directly with the surrounding aquatic environment. Spring Viremia of Carp Virusï¼SVCVï¼, a highly pathogenic agent causing substantial harm to common carp populations, has been designated as a Class 2 animal disease by the Ministry of Agriculture and Rural Affairs of China. Utilizing a comprehensive array of research techniques, including Hematoxylin and Eosin (HE)ãAlcian Blue Periodic Acid-Schiff (AB-PAS)ãtranscriptome analysis for global gene expression profiling and Reverse Transcription-Polymerase Chain Reaction (RT-qPCR), this study uncovered several key findings: SVCV is capable of compromising the mucosal architecture in the gill and intestinal tissues of carp, and stimulate the proliferation of mucous cells both in gill and intestinal tissues. Critically, the study revealed that SVCV's invasion elicits a robust response from the carp's mucosal immune system, demonstrating the organism's capacity to resist SVCV invasion despite the challenges posed by the pathogen.
Assuntos
Carpas , Doenças dos Peixes , Perfilação da Expressão Gênica , Brânquias , Intestinos , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Brânquias/imunologia , Brânquias/virologia , Rhabdoviridae/fisiologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Carpas/imunologia , Carpas/genética , Perfilação da Expressão Gênica/veterinária , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Infecções por Rhabdoviridae/virologia , Intestinos/imunologia , Intestinos/virologia , Imunidade Inata/genética , Transcriptoma/imunologia , Imunidade nas MucosasRESUMO
Because of the low host specificity, Ichthyophthirius multifiliis (Ich) can widely cause white spot disease in aquatic animals, which is extremely difficult to treat. Prior research has demonstrated a considerable impact of concentrated mannan-oligosaccharide (cMOS) on the prevention of white spot disease in goldfish, but the specific mechanism is still unknown. In this study, transcriptome sequencing, histological analysis, immunofluorescence analysis, phagocytosis activity assay and qRT-PCR assay were used to systematically reveal the potential mechanism of cMOS in supporting the resistance of goldfish (Carrasius auratus) to Ich invasion. According to the transcriptome analysis, the gill tissue of goldfish receiving the cMOS diet showed greater expression of mannose-receptor (MRC) related genes, higher phagocytosis activity, up-regulated expression of phagocytosis-related genes and inflammatory-related genes compared with the control, indicating that cMOS can have an effect on phagocytosis and non-specific immunity of goldfish. After the Ich challenge, transcriptome analysis revealed that cMOS fed goldfish displayed a higher level of phagocytic response, whereas non-cMOS fed goldfish displayed a greater inflammatory reaction. Besides, after Ich infection, cMOS-fed goldfish displayed greater phagocytosis activity, a stronger MRC positive signal, higher expression of genes associated with phagocytosis (ABCB2, C3, MRC), and lower expression of genes associated with inflammation (IL-1ß, IL-17, IL-8, TNF-α, NFKB). In conclusion, our experimental results suggest that cMOS may support phagocytosis by binding to MRC on the macrophage cell membrane and change the non-specific immunity of goldfish by stimulating cytokine expression. The results of this study provide new insights for the mechanism of cMOS on parasitic infection, and also suggest phagocytosis-related pathways may be potential targets for prevention of Ich infection.
Assuntos
Doenças dos Peixes , Carpa Dourada , Animais , Mananas/farmacologia , Citocinas/genética , Macrófagos/metabolismo , FagocitoseRESUMO
Natural bioactive compounds (NBCs) are widely used in clinical treatment. For example, Tripterygium wilfordii Hook f. is commonly known in China as Lei-Gong-Teng which means thunder god vine. This herb is widely distributed in Eastern and Southern China, Korea, and Japan. The natural bioactive compounds of this herb can be extracted and made into tripterygium glycoside tablets. It is one of the most commonly used and effective traditional Chinese herbal medicines against rheumatoid arthritis (RA), nephrotic syndrome (NS), autoimmune hepatis (AIH), and so on. However, many NBCs are difficult to reliably quantify in the serum due to the effects of matrix and RSD. In addition, the targeted compound's internal standard (IS) is rarely sold due to the complex isotope internal standard synthesis pathway. In this study, a new quantitation method for 18O labeling combined with off-line SPE was formulated. We contrasted the recoveries and matrix effects of various separation methods in order to choose the best method. Furthermore, we optimized the conditions for SPE loading and washing. An isotopic internal standard was prepared by the 16O/18O exchanging reaction in order to eliminate the matrix effects. The method's accuracy and precision met the requirements for method validation. The recovery of this method was close to 60%. The relative standard deviation (RSD) of the high-concentration sample was 2%, and the limit of detection (LOD) was 1 ng/mL. This method could be used to analyze the clinical serum concentration of demethylzeylasteral. Sixty samples were collected from 10 patients with diabetes nephropathy. The quantitation results of demethylzeylasteral in patients' serum obtained using this method exhibited a correlation between therapeutic drug monitoring (TDM) and decreased urinary protein. This work may have broad implications for the study of drug metabolism in vivo and the clinical application of low-abundance and difficult-to-quantify NBCs.
Assuntos
Artrite Reumatoide , Medicamentos de Ervas Chinesas , Triterpenos , Humanos , Artrite Reumatoide/tratamento farmacológico , GlicosídeosRESUMO
The intestinal microbiota interacts with the host and plays an important role in the immune response, digestive physiology, and regulation of body functions. In addition, it is also well documented that the intestinal microbiota of aquatic animals are closely related to their growth rate. However, whether it resulted in different sizes of crayfish in the rice-crayfish coculture model remained vague. Here, we analyzed the intestinal microbiota characteristics of crayfish of three sizes in the same typical rice-crayfish coculture field by high-throughput sequencing technology combined with quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme activity, investigating the relationship between intestinal microbiota in crayfish and water and sediments. The results showed that the dominant intestinal microbiota of crayfish was significantly different between the large size group (BS), normal size group (NS), and small size group (SS), where Bacteroides and Candidatus_Bacilloplasma contributed to the growth of crayfish by facilitating food digestion through cellulolysis, which might be one of the potential factors affecting the difference in sizes. Follow-up experiments confirmed that the activity of lipase (LPS) and protease was higher in BS, and the relative expression of development-related genes, including alpha-amylase (α-AMY), myocyte-specific enhancer factor 2a (MEF2a), glutathione reductase (GR), chitinase (CHI), and ecdysone receptor (EcR), in BS was significantly higher than that in SS. These findings revealed the intestinal microbiota characteristics of crayfish of different sizes and their potential impact on growth, which is valuable for managing and manipulating the intestinal microbiota in crayfish to achieve high productivity in practice. KEY POINTS: ⢠Significant differences in the dominant microflora of BS, NS, and SS in crayfish. ⢠Cellulolysis might be a potential factor affecting different sizes in crayfish. ⢠Adding Bacteroides and Candidatus_Bacilloplasma helped the growth of crayfish.
Assuntos
Microbioma Gastrointestinal , Microbiota , Oryza , Animais , Astacoidea , Alimentos Marinhos , BacteroidesRESUMO
Ischemic reperfusion injury, caused by oxidative stress during reperfusion, is an inevitable outcome of organ transplantation, especially when the organ preservation time is prolonged. Prolonged ischaemic preservation is a valuable technique for improving the success of organ transplantation, but numerous challenges remain. 3-nitro-N-methyl salicylamide (3-NNMS), an inhibitor of mitochondrial electron transport chain complex III, can be used to reduce reactive oxygen species production during blood reperfusion by slowing the electron flow rate of the respiratory chain. Based on this property, a novel preservation solution was developed for the preservation of isolated rat heart and its cardioprotective effect was investigated during an 8-h cold ischaemia preservation time for the first time. For comparison, 3-NNMS was also included in the histidine-tryptophan-ketoglutarate (HTK) solution. Compared to HTK, HTK supplemented with 3-NNMS significantly improved the heart rate of isolated rat hearts after 8 h of cold storage. Both 3-NNMS solution and HTK supplemented with 3-NNMS solution decreased cardiac troponin T and lactate dehydrogenase levels in perfusion fluid and reduced reactive oxygen species and malondialdehyde levels in the myocardium. The 3-NNMS also maintained the membrane potential of myocardial mitochondria and significantly increased superoxide dismutase levels. These results showed that the new 3-NNMS solution can protect mitochondrial and cardiomyocyte function by increasing antioxidant capacity and reducing oxidative stress in cryopreserved rat hearts during a prolonged preservation time, resulting in less myocardial injury and better heart rate.
Assuntos
Coração , Soluções para Preservação de Órgãos , Ratos , Animais , Soluções para Preservação de Órgãos/farmacologia , Espécies Reativas de Oxigênio , Miocárdio , Glucose/farmacologia , Manitol/farmacologia , Salicilamidas/farmacologiaRESUMO
Amputation dehorning (AD) is a common practice performed on calves, causing harmful effects such as pain, distress, anxiety, and fear. These effects extend to behavioral, physiological, and hematological responses, prompting serious ethical concerns regarding animal welfare, even when performed with local anesthesia. Meloxicam, a nonsteroidal anti-inflammatory drug, has been widely used to mitigate the side effects of dehorning and disbudding in calves. However, there is a notable gap in research regarding the effects of meloxicam on calves aged 6 wk to 6 mo undergoing AD procedures. This study was designed to assess the effectiveness of co-administering meloxicam with lidocaine, a cornual nerve anesthetic, in alleviating the adverse effects caused by the AD procedure in calves within this age range, compared with the use of lidocaine alone. Thirty Holstein calves were enrolled and randomly divided into 2 groups. The first group received a subcutaneous injection of 5 mL of lidocaine in the horn area and a subcutaneous injection of 0.9% saline at a dose of 0.025 mL/kg in the neck, administered 10 min before the AD procedure. The second group received a combination of lidocaine and meloxicam: a subcutaneous injection of 5 mL of lidocaine in the horn area and a subcutaneous injection of 20 mg/mL meloxicam at a dose of 0.025 mL/kg in the neck, also administered 10 min before the AD procedure. To avoid subjective bias, the researchers were blinded to the treatment groups. Pain-related behaviors, including tail flicking, head shaking, ear flicking, head rubbing, head crossing bar, and kicking, were observed, and physiological parameters, including heart rate, rectal temperature, respiration rate, mechanical nociceptive threshold (MNT), daily active steps, and food intake were monitored. Hematological conditions were determined using enzyme-linked immunosorbent assays and routine blood tests. The data were processed using a generalized linear mixed model. The outcomes demonstrated that the AD procedure increased the frequencies of ear flicking and resulted in rises in the respiration rate, heart rate, rectal temperature, and daily active steps. It also led to decreases in total food intake, forage intake, hay intake, MNT, and increased concentrations of prostaglandin E2 (PgE2), IL-1ß, tumor necrosis factor-α (TNF-α), nitric oxide (NO), and malondialdehyde, as well as glutathione peroxidase activity. However, calves that received meloxicam treatment showed significant improvements in response to the AD procedure, including lower respiration rates, heart rates, and rectal temperatures; higher MNT; and lower intermediate cell ratio. They also had higher red blood counts, hemoglobin levels, hematocrit values; larger mean platelet volumes; and lower concentrations of PgE2, IL-1ß, TNF-α, and NO. These results suggest that co-administration of lidocaine and meloxicam may aid in mitigating the adverse effects induced by the AD procedure on these calves, thereby supporting the use of meloxicam in conjunction with a local anesthetic in AD procedures for calves aged 6 wk to 6 mo.
Assuntos
Meloxicam , Animais , Bovinos , Meloxicam/uso terapêutico , Meloxicam/farmacologia , Cornos/cirurgia , Anti-Inflamatórios não Esteroides/uso terapêutico , Lidocaína/farmacologia , Lidocaína/uso terapêutico , Bem-Estar do AnimalRESUMO
BACKGROUND: The hepatopancreas of crustaceans serves as a significant organ for both the synthesis and secretion of digestive enzymes, as well as energy storage. In the event of food shortage, the hepatopancreas can provide energy for survival. To investigate the potential regulatory mechanisms of the hepatopancreas in response to starvation in Eriocheir Sinensis, transcriptome analysis, histological study and qRT-PCR were performed. RESULTS: The results showed that starvation caused a decrease in the hepatopancreas index of E. sinensis, which had certain effects on the tissue structure, metabolism and angiogenesis in the hepatopancreas. In addition, WGCNA and linear regression analysis showed that the genes significantly related to the hepatopancreas index were mainly enriched in the angiogenesis pathway, in which AKT signaling played an important role. Starvation may inhibit AKT signaling pathway by reducing the expression of TGFBI, HSP27, HHEX, and EsPVF1, thereby hindering angiogenesis, promoting apoptosis, and leading to hepatopancreas atrophy. CONCLUSION: These results indicate that AKT plays an important role in the angiogenesis pathway and apoptosis of the starvation induced hepatopancreas index reduction, which is beneficial to further understand the effect of starvation stress on hepatopancreas of Chinese mitten crab.
Assuntos
Braquiúros , Hepatopâncreas , Animais , Hepatopâncreas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Perfilação da Expressão Gênica , Braquiúros/genéticaRESUMO
Type II secretion systems (T2SS) are important molecular machines used by bacteria to transport a wide range of proteins across the outer membrane from the periplasm. Vibrio mimicus is an epidemic pathogen threats to both aquatic animals and human health. Our previous study demonstrates that T2SS deletion reduced virulence by 307.26 times in yellow catfish. However, the specific effects of T2SS-mediated extracellular protein secretion in V. mimicus, including its potential role in exotoxin secretion or other mechanisms, require further investigation. Through proteomics and phenotypic analyses, this study observed that the ΔT2SS strain exhibited significant self-aggregation and dynamic deficiency, with a notable negative correlation with subsequent biofilm formation. The proteomics analysis revealed 239 different abundances of extracellular proteins after T2SS deletion, including 19 proteins with higher abundance and 220 proteins with lower and even absent in the ΔT2SS strain. These extracellular proteins are involved in various pathways, such as metabolism, virulence factors expression, and enzymes. Among them, purine, pyruvate, and pyrimidine metabolism, and the Citrate cycle, were the primary pathways affected by T2SS. Our phenotypic analysis is consistent with these findings, suggesting that the decreased virulence of ΔT2SS strains is due to the effect of T2SS on these proteins, which negatively impacts growth, biofilm formation, auto-aggregation, and motility of V. mimicus. These results provide valuable insights for designing deletion targets for attenuated vaccines development against V. mimicus and expand our understanding of the biological functions of T2SS.
Assuntos
Sistemas de Secreção Tipo II , Animais , Humanos , Sistemas de Secreção Tipo II/genética , Sistemas de Secreção Tipo II/metabolismo , Vacinas Atenuadas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismoRESUMO
Based on their good physiological functions and physical properties, carbohydrates are widely used in fish feed. However, excessive use of carbohydrates such as starch in fish feed may reduce the immunity of the fish and cause a series of health problems. In order to more clearly clarify the effects of different starch levels in feed on the immune organs of Micropterus salmoides, this study took the immune organs as the entry point and explored it from several perspectives, including differences in enzyme activity in plasma, changes in gene expression in immune organs, and resistance to pathogenic bacteria. The results showed that (1) high starch feed activates inflammatory responses in the spleen and head kidney through the MAPK signaling pathway. This leads to a decrease in the number of lymphocytes and weakens the resistance to pathogens; (2) high starch diet affects the antioxidant capacity of the trunk kidney by regulating the Keap1/Nrf2 pathway; (3) There was a strong correlation between gene expression patterns in the head kidney and lysozyme content in plasma. This implies that the high starch diet may regulate lysozyme production by affecting gene expression in the head kidney and further affect immune function. This study helps to reveal the interaction between starch and the immune system and provide scientific basis for the development of reasonable dietary recommendations and disease prevention.
Assuntos
Bass , Animais , Fator 2 Relacionado a NF-E2/genética , Muramidase/farmacologia , Amido , Proteína 1 Associada a ECH Semelhante a Kelch , Dieta/veterinária , Transdução de Sinais , Imunidade , Ração Animal/análise , Suplementos NutricionaisRESUMO
Ferric citrate (FC) has been used as an iron fortifier and nutritional supplement, which is reported to induce colitis in rats, however the underlying mechanism remains to be elucidated. We performed a 16-week study of FC in male healthy C57BL/6 mice (nine-month-old) with oral administration of Ctr (0.9 % NaCl), 1.25 % FC (71 mg/kg/bw), 2.5 % FC (143 mg/kg/bw) and 5 % FC (286 mg/kg/bw). FC-exposure resulted in colon iron accumulation, histological alteration and reduce antioxidant enzyme activities, such as glutathione (GSH), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and total antioxidant capacity (T-AOC), together with enhanced lipid peroxidation level, including malondialdehyde (MDA) level and 4-Hydroxynonenal (4-HNE) protein expression. Exposure to FC was associated with upregulated levels of the interleukin (IL)- 6, IL-1ß, IL-18, IL-8 and tumor necrosis factor α (TNF-α), while down-regulated levels of IL-4 and IL-10. Exposure to FC was positively associated with the mRNA and protein expressions of cysteine-aspartic proteases (Caspase)- 9, Caspase-3, Bcl-2-associated X protein (Bax), while negatively associated with B-cell lymphoma 2 (Bcl2) in mitochondrial apoptosis signaling pathway. FC-exposure changed the diversity and composition of gut microbes. Additionally, the serum lipopolysaccharide (LPS) contents increased in FC-exposed groups when compared with the control group, while the expression of colonic tight junction proteins (TJPs), such as Claudin-1 and Occludin were decreased. These findings indicate that the colonic mucosal injury induced by FC-exposure are associated with oxidative stress generation, inflammation response and cell apoptosis, as well as the changes in gut microbes diversity and composition.
Assuntos
Apoptose , Colo , Compostos Férricos , Alimentos Fortificados , Microbioma Gastrointestinal , Inflamação , Estresse Oxidativo , Animais , Masculino , Camundongos , Ratos , Apoptose/efeitos dos fármacos , Colo/efeitos dos fármacos , Colo/metabolismo , Compostos Férricos/toxicidade , Alimentos Fortificados/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Glutationa/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Ferro/metabolismo , Camundongos Endogâmicos C57BL , Superóxido Dismutase/metabolismoRESUMO
Nickel, as a widely polluted metal, has been shown nephrotoxicity. Ferroptosis is a new type of cell death driven by iron-dependent lipid peroxidation. Our study found that nickel chloride (NiCl2) induced ferroptosis in mouse kidney and TCMK-1 cells. The iron content was significantly increased in the kidney and TCMK-1 cells after NiCl2 treatment. Lipid peroxidation and MDA content were significantly increased, and GSH content and T-SOD activity were significantly decreased after exposure to NiCl2. Moreover, NiCl2 increased COX-2 protein levels, decreased SLC7A11 and GPX4 protein levels, and elevated Ptgs2 mRNA levels. Next, the mechanism of Ni-induced ferroptosis was investigated. The results showed that NiCl2 induced autophagy in TCMK-1 cells, which promoted ferroptosis induced by NiCl2. Furthermore, the data of autophagy activation or inhibition experiment showed that autophagy facilitated ferroptosis through the degradation of the iron regulation protein NCOA4 and FTH1. Otherwise, iron chelator DFOM treatment inhibited ferroptosis induced by NiCl2. Finally, ferroptosis inhibitor Fer-1 treatment significantly alleviated cytotoxicity induced by NiCl2. To sum up, our above results showed that ferroptosis is involved in NiCl2-induced nephrotoxicity, and NiCl2 induces autophagy-dependent ferritin degradation, releases iron ions, leads to iron overload, and induces ferroptosis. This study supplies a new theoretical foundation for the study of nickel and renal toxicity.
Assuntos
Ferroptose , Animais , Camundongos , Níquel/toxicidade , Níquel/metabolismo , Ferro/metabolismo , Ferritinas , Autofagia/genéticaRESUMO
Nickel (Ni) is an important and widely hazardous chemical industrial waste. Excessive Ni exposure could cause multi-organs toxicity in human and animals. Liver is the major target organ of Ni accumulation and toxicity, however, the precise mechanism is still unclear. In this study, nickel chloride (NiCl2 )-treatment induced hepatic histopathological changes in the mice, and, transmission electron microscopy results showed mitochondrial swollen and deformed of hepatocyte. Next, the mitochondrial damages including mitochondrial biogenesis, mitochondrial dynamics, and mitophagy were measured after NiCl2 administration. The results showed that NiCl2 suppressed mitochondrial biogenesis by decreasing PGC-1α, TFAM, and NRF1 protein and mRNA expression levels. Meanwhile, the proteins involved in mitochondrial fusion were reduced by NiCl2 , such as Mfn1 and Mfn2, however, mitochondrial fission proteins Drip1 and Fis1 were significantly increased. The up-regulation of mitochondrial p62 and LC3II expression indicated that NiCl2 increased mitophagy in the liver. Moreover, the receptor-mediated mitophagy and ubiquitin (Ub)-dependent mitophagy were detected. NiCl2 promoted PINK1 accumulation and Parkin recruitment on mitochondria. And, the receptor proteins of mitophagy Bnip3 and FUNDC1 were increased in the NiCl2 -treated mice liver. Overall, these results show that NiCl2 could induce mitochondria damage in the liver of mice, and, dysfunction of mitochondrial biogenesis, mitochondrial dynamics and mitophagy involved in the molecular mechanism of NiCl2 -induced hepatotoxicity.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Mitofagia , Humanos , Camundongos , Animais , Mitofagia/genética , Dinâmica Mitocondrial/genética , Biogênese de Organelas , Níquel/toxicidade , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismoRESUMO
Elizabethkingia miricola is an emerging opportunistic pathogen that is highly pathogenic in both immunocompromised humans and animals. Once the disease occurs, treatment can be very difficult. Therefore, a deep understanding of the pathological mechanism of Elizabethkingia miricola is the key to the prevention and control of the disease. In this study, we isolated the pathogenic bacteria from bullfrogs with dark skin color, weak limbs, wryneck, and cataracts. Via subsequent morphological observations and a 16S rRNA gene sequence analysis, the pathogen was identified as Elizabethkingia miricola. The histopathological and transmission electron microscopy analysis revealed that the brain was the main target organ. Therefore, brain samples from diseased and healthy bullfrogs were used for the RNA-Seq analysis. The comparative transcriptome analysis revealed that the diseased bullfrog brain was characterized by the immune activation and inflammatory response, which were mediated by the "NOD-like receptor signaling pathway" and the "Toll-like receptor signaling pathway". We also performed qRT-PCR to examine the expression profile of inflammation-related genes, which further verified the reliability of our transcriptome data. Based on the above results, it was concluded that the NOD/Toll-like receptor-related networks that dominate the immune activation and inflammatory response were activated in the brain of Elizabethkingia miricola-infected bullfrogs. This study contributes to the search for therapeutic targets for bullfrog meningitis and provides basic information for establishing effective measures to prevent and control bullfrog meningitis.
Assuntos
Infecções por Flavobacteriaceae , Flavobacteriaceae , Meningite , Animais , Humanos , Rana catesbeiana , RNA Ribossômico 16S/genética , Reprodutibilidade dos Testes , Infecções por Flavobacteriaceae/microbiologia , Infecções por Flavobacteriaceae/patologia , Ranidae , Transdução de SinaisRESUMO
Nucleotide-binding and oligomerization domain-like receptors (NOD-like receptors, NLRs) can regulate the inflammatory response to eliminate pathogens and maintain the host's homeostasis. In this study, the head kidney macrophages of Siberian sturgeon were treated with lipopolysaccharide (LPS) to induce inflammation by evaluating the expression of cytokines. The high-throughput sequencing for macrophages after 12 h treatment showed that 1224 differentially expressed genes (DEGs), including 779 upregulated and 445 downregulated, were identified. DEGs mainly focus on pattern recognition receptors (PRRs) and the adaptor proteins, cytokines, and cell adhesion molecules. In the NOD-like receptor signaling pathway, multiple NOD-like receptor family CARD domains containing 3-like (NLRC3-like) were significantly downregulated, and pro-inflammatory cytokines were upregulated. Based on the transcriptome database, 19 NLRs with NACHT structural domains were mined and named in Siberian sturgeon, including 5 NLR-A, 12 NLR-C, and 2 other NLRs. The NLR-C subfamily had the characteristics of expansion of the teleost NLRC3 family and lacked the B30.2 domain compared with other fish. This study revealed the inflammatory response mechanism and NLRs family characterization in Siberian sturgeon by transcriptome and provided basic data for further research on inflammation in teleost.
Assuntos
Proteínas NLR , Transcriptoma , Animais , Proteínas NLR/metabolismo , Proteínas de Peixes/metabolismo , Peixes/genética , Peixes/metabolismo , Macrófagos/metabolismo , Citocinas/genética , Inflamação/genéticaRESUMO
Receptor-interacting serine/threonine-protein kinase 2 (RIPK2) is an adaptor protein of the pattern recognition receptors NOD1 and NOD2 involved in regulating inflammatory response and resisting pathogenic microbial infection. In this study, Acipenser baerii RIPK2 (AbRIPK2) was identified. The open reading frame of AbRIPK2 was 1815 bp encoding 604 amino acids. AbRIPK2 possessed the typical N-terminal kinase domain (KD) and C-terminal caspase recruitment domain (CARD). The phylogenetic tree analysis revealed that AbRIPK2 shared a relatively high identity with bony fish. Real-time fluorescence quantitative PCR (qRT-PCR) results indicated that AbRIPK2 was highly expressed in the gill, followed by muscle, liver and heart. AbRIPK2 was significantly induced in the spleen and valvular intestine after Streptococcus iniae and Aeromonas hydrophila infection. AbRIPK2 was significantly upregulated after peptidoglycan (PGN) treatment in the splenic leukocytes. This study indicated that AbRIPK2 played a potential role in resisting the pathogenic infection of Siberian sturgeon by responding to bacteria.
Assuntos
Peixes , Proteínas Quinases , Animais , Filogenia , Peixes/fisiologia , Treonina/metabolismo , Serina/metabolismoRESUMO
The receptor of advanced glycation end products (RAGE) and Toll-like receptor 4 (TLR4) are important receptors for inflammatory responses induced by high glucose (HG) and lipopolysaccharide (LPS) and show crosstalk phenomena in inflammatory responses. However, it is unknown whether RAGE and TLR4 can influence each other's expression through a crosstalk mechanism and whether the RAGE-TLR4 crosstalk related to the molecular mechanism of HG enhances the LPS-induced inflammatory response. In this study, the implications of LPS with multiple concentrations (0, 1, 5, and 10 µg/mL) at various treatment times (0, 3, 6, 12, and 24 h) in primary bovine alveolar macrophages (BAMs) were explored. The results showed that a 5 µg/mL LPS treatment at 12 h had the most significant increment on the pro-inflammatory cytokine interleukin 1ß (IL-1ß), IL-6, and tumor necrosis factor (TNF)-α levels in BAMs (p < 0.05) and that the levels of TLR4, RAGE, MyD88, and NF-κB p65 mRNA and protein expression were upregulated (p < 0.05). Then, the effect of LPS (5 µg/mL) and HG (25.5 mM) co-treatment in BAMs was explored. The results further showed that HG significantly enhanced the release of IL-1ß, IL-6, and TNF-α caused by LPS in the supernatant (p < 0.01) and significantly increased the levels of RAGE, TLR4, MyD88, and NF-κB p65 mRNA and protein expression (p < 0.01). Pretreatment with FPS-ZM1 and TAK-242, the inhibitors of RAGE and TLR4, significantly alleviated the HG + LPS-induced increment of RAGE, TLR4, MyD88, and NF-κB p65 mRNA and protein expression in the presence of HG and LPS (p < 0.01). This study showed that RAGE and TLR4 affect each other's expression through crosstalk during the combined usage of HG and LPS and synergistically activate the MyD88/NF-κB signaling pathway to promote the release of pro-inflammatory cytokines in BAMs.