Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nature ; 620(7976): 1018-1024, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37612503

RESUMO

Coral reefs are highly diverse ecosystems that thrive in nutrient-poor waters, a phenomenon frequently referred to as the Darwin paradox1. The energy demand of coral animal hosts can often be fully met by the excess production of carbon-rich photosynthates by their algal symbionts2,3. However, the understanding of mechanisms that enable corals to acquire the vital nutrients nitrogen and phosphorus from their symbionts is incomplete4-9. Here we show, through a series of long-term experiments, that the uptake of dissolved inorganic nitrogen and phosphorus by the symbionts alone is sufficient to sustain rapid coral growth. Next, considering the nitrogen and phosphorus budgets of host and symbionts, we identify that these nutrients are gathered through symbiont 'farming' and are translocated to the host by digestion of excess symbiont cells. Finally, we use a large-scale natural experiment in which seabirds fertilize some reefs but not others, to show that the efficient utilization of dissolved inorganic nutrients by symbiotic corals established in our laboratory experiments has the potential to enhance coral growth in the wild at the ecosystem level. Feeding on symbionts enables coral animals to tap into an important nutrient pool and helps to explain the evolutionary and ecological success of symbiotic corals in nutrient-limited waters.


Assuntos
Antozoários , Ecossistema , Nitrogênio , Fósforo , Fotossíntese , Simbiose , Animais , Antozoários/crescimento & desenvolvimento , Antozoários/metabolismo , Antozoários/fisiologia , Nitrogênio/metabolismo , Fósforo/metabolismo , Simbiose/fisiologia , Aves/fisiologia
3.
Proc Natl Acad Sci U S A ; 117(41): 25378-25385, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32958634

RESUMO

Our study reveals a hitherto overlooked ecological threat of climate change. Studies of warming events in the ocean have typically focused on the events' maximum temperature and duration as the cause of devastating disturbances in coral reefs, kelp forests, and rocky shores. In this study, however, we found that the rate of onset (Ronset), rather than the peak, was the likely trigger of mass mortality of coral reef fishes in the Red Sea. Following a steep rise in water temperature (4.2 °C in 2.5 d), thermally stressed fish belonging to dozens of species became fatally infected by Streptococcus iniae Piscivores and benthivores were disproportionately impacted whereas zooplanktivores were spared. Mortality rates peaked 2 wk later, coinciding with a second warming event with extreme Ronset The epizootic lasted ∼2 mo, extending beyond the warming events through the consumption of pathogen-laden carcasses by uninfected fish. The warming was widespread, with an evident decline in wind speed, barometric pressure, and latent heat flux. A reassessment of past reports suggests that steep Ronset was also the probable trigger of mass mortalities of wild fish elsewhere. If the ongoing increase in the frequency and intensity of marine heat waves is associated with a corresponding increase in the frequency of extreme Ronset, calamities inflicted on coral reefs by the warming oceans may extend far beyond coral bleaching.


Assuntos
Mudança Climática , Recifes de Corais , Doenças dos Peixes/mortalidade , Peixes , Infecções Estreptocócicas/veterinária , Animais , Antozoários , Surtos de Doenças/veterinária , Doenças dos Peixes/microbiologia , Resposta ao Choque Térmico , Oceano Índico , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/mortalidade , Streptococcus iniae/isolamento & purificação , Fatores de Tempo
4.
J Exp Biol ; 225(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35315487

RESUMO

Feeding by zooplanktivorous fish depends on their foraging movements and the flux of prey to which they are exposed. While prey flux is a linear function of zooplankton density and flow speed, those two factors are expected to contribute differently to fish movements. Our objective was to determine the effects of these factors for garden eels, stationary fish that feed while anchored to the sandy bottom by keeping the posterior parts of their bodies inside a burrow. Using a custom-made flume with a sandy bottom, we quantified the effects of prey density and flow speed on feeding rates by spotted garden eels (Heteroconger hassi). Feeding rates increased linearly with prey density. However, feeding rates did not show a linear relationship with flow speed and decreased at 0.25 m s-1. Using label-free tracking of body points and 3D movement analysis, we found that the reduction in feeding rates was related to modulation of the eel's movements, whereby the expected increase in energy expenditure was avoided by reducing exposure and drag. No effects of flow speed on strike speed, reactive distance or vectorial dynamic body acceleration (VeDBA) were found. A foraging model based on the body length extended from the burrow showed correspondence with observations. These findings suggest that as a result of their unique foraging mode, garden eels can occupy self-made burrows in exposed shelter-free sandy bottoms where they can effectively feed on drifting zooplankton.


Assuntos
Plâncton , Comportamento Predatório , Animais , Enguias , Comportamento Alimentar , Zooplâncton
5.
J Exp Biol ; 221(Pt 16)2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-29986872

RESUMO

A major challenge faced by sessile animals that feed in the flow is to maintain effective feeding postures while enduring hydrodynamic forces. Garden eels exhibit an exceptional lifestyle: feeding on drifting zooplankton while being 'anchored' in a burrow they dig in the sand. Using underwater observations, sampling and three-dimensional video recording, we measured the feeding rates and characterized feeding postures of garden eels under a wide range of current speeds. We show that the eels behaviorally resolve the trade-off between adverse biomechanical forces and beneficial fluxes of food by modulating their body postures according to current speeds. In doing so, the eels substantially reduce drag forces when currents are strong, yet keep their head well above bottom in order to effectively feed under conditions of high prey fluxes. These abilities have allowed garden eels to become one of the rare oceanic fishes that live in sandy, predation-rich habitats and feed on zooplankton while being attached to the bottom.


Assuntos
Adaptação Fisiológica , Enguias/fisiologia , Comportamento Alimentar/fisiologia , Zooplâncton , Animais , Fenômenos Biomecânicos , Hidrodinâmica , Postura , Gravação em Vídeo
6.
J Exp Biol ; 220(Pt 10): 1803-1811, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28515171

RESUMO

Coral reefs are amongst the most diverse ecosystems on Earth where complex inter-specific interactions are ubiquitous. An example of such interactions is the mutualistic relationship between damselfishes and branching corals in the Northern Red Sea, where the fish use corals as shelter and provide them with nutrients, enhance the flow between their branches, and protect them from predators. By enhancing the flow between the coral branches, the fish ventilate the coral's inner zone, mitigating hypoxic conditions that otherwise develop within that zone during the night. Here, we tested, for the first time, the effects of the damselfish Dascyllus marginatus on photosynthesis and respiration in its host coral Stylophora pistillata Laboratory experiments using an intermittent-flow respirometer showed that the presence of fish between the coral branches under light conditions augmented the coral's photosynthetic rate. No effect on the coral's respiration was found under dark conditions. When a fish was allowed to enter the inner zone of a dead coral skeleton, its respiration was higher than when it was in a live coral. Field observations indicated that damselfish were present between coral branches 18-34% of the time during daylight hours and at all times during the night. Considering the changes induced by the fish together with the proportion of time they were found between coral branches in the field, the effect of the fish amounted to an augmentation of 3-6% of the coral's daily photosynthesis. Our findings reveal a previously unknown positive contribution of coral-dwelling fish to their host's photosynthesis.


Assuntos
Antozoários/fisiologia , Perciformes/fisiologia , Fotossíntese/fisiologia , Simbiose , Animais , Metabolismo Basal , Comportamento Animal , Oceano Índico , Luz , Movimentos da Água
7.
Proc Natl Acad Sci U S A ; 110(22): 8978-83, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23610420

RESUMO

Soft corals of the family Xeniidae exhibit a unique, rhythmic pulsation of their tentacles (Movie S1), first noted by Lamarck nearly 200 y ago. However, the adaptive benefit of this perpetual, energetically costly motion is poorly understood. Using in situ underwater particle image velocimetry, we found that the pulsation motions thrust water upward and enhance mixing across the coral-water boundary layer. The induced upward motion effectively prevents refiltration of water by neighboring polyps, while the intensification of mixing, together with the upward flow, greatly enhances the coral's photosynthesis. A series of controlled laboratory experiments with the common xeniid coral Heteroxenia fuscescens showed that the net photosynthesis rate during pulsation was up to an order of magnitude higher than during the coral's resting, nonpulsating state. This enhancement diminished when the concentration of oxygen in the ambient water was artificially raised, indicating that the enhancement of photosynthesis was due to a greater efflux of oxygen from the coral tissues. By lowering the internal oxygen concentration, pulsation alleviates the problem of reduced affinity of ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO) to CO2 under conditions of high oxygen concentrations. The photosynthesis-respiration ratio of the pulsating H. fuscescens was markedly higher than the ratios reported for nonpulsating soft and stony corals. Although pulsation is commonly used for locomotion and filtration in marine mobile animals, its occurrence in sessile (bottom-attached) species is limited to members of the ancient phylum Cnidaria, where it is used to accelerate water and enhance physiological processes.


Assuntos
Antozoários/fisiologia , Extremidades/fisiologia , Movimento/fisiologia , Fotossíntese/fisiologia , Animais , Dióxido de Carbono/metabolismo , Oceano Índico , Oxigênio/metabolismo , Reologia , Ribulose-Bifosfato Carboxilase/metabolismo , Estatísticas não Paramétricas , Movimentos da Água
8.
Proc Natl Acad Sci U S A ; 109(3): 853-7, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22203999

RESUMO

The benefits of bioluminescence for nonsymbiotic marine bacteria have not been elucidated fully. One of the most commonly cited explanations, proposed more than 30 y ago, is that bioluminescence augments the propagation and dispersal of bacteria by attracting fish to consume the luminous material. This hypothesis, based mostly on the prevalence of luminous bacteria in fish guts, has not been tested experimentally. Here we show that zooplankton that contacts and feeds on the luminescent bacterium Photobacterium leiognathi starts to glow, and demonstrate by video recordings that glowing individuals are highly vulnerable to predation by nocturnal fish. Glowing bacteria thereby are transferred to the nutritious guts of fish and zooplankton, where they survive digestion and gain effective means for growth and dispersal. Using bioluminescence as bait appears to be highly beneficial for marine bacteria, especially in food-deprived environments of the deep sea.


Assuntos
Organismos Aquáticos/microbiologia , Bactérias/metabolismo , Peixes/microbiologia , Medições Luminescentes , Zooplâncton/microbiologia , Animais , Artemia/microbiologia , Bactérias/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Fezes/microbiologia , Trato Gastrointestinal/microbiologia , Viabilidade Microbiana , Photobacterium/metabolismo , Comportamento Predatório/fisiologia
9.
PLoS Comput Biol ; 9(1): e1002849, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23326222

RESUMO

The growth of scleractinian corals is strongly influenced by the effect of water motion. Corals are known to have a high level of phenotypic variation and exhibit a diverse range of growth forms, which often contain a high level of geometric complexity. Due to their complex shape, simulation models represent an important option to complement experimental studies of growth and flow. In this work, we analyzed the impact of flow on coral's morphology by an accretive growth model coupled with advection-diffusion equations. We performed simulations under no-flow and uni-directional flow setup with the Reynolds number constant. The relevant importance of diffusion to advection was investigated by varying the diffusion coefficient, rather than the flow speed in Péclet number. The flow and transport equations were coupled and solved using COMSOL Multiphysics. We then compared the simulated morphologies with a series of Computed Tomography (CT) scans of scleractinian corals Pocillopora verrucosa exposed to various flow conditions in the in situ controlled flume setup. As a result, we found a similar trend associated with the increasing Péclet for both simulated forms and in situ corals; that is uni-directional current tends to facilitate asymmetrical growth response resulting in colonies with branches predominantly developed in the upstream direction. A closer look at the morphological traits yielded an interesting property about colony symmetry and plasticity induced by uni-directional flow. Both simulated and in situ corals exhibit a tendency where the degree of symmetry decreases and compactification increases in conjunction with the augmented Péclet thus indicates the significant importance of hydrodynamics.


Assuntos
Antozoários/crescimento & desenvolvimento , Hidrodinâmica , Modelos Biológicos , Animais , Análise de Elementos Finitos , Tomografia Computadorizada por Raios X
10.
Glob Chang Biol ; 19(12): 3640-7, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23959950

RESUMO

The stability and persistence of coral reefs in the decades to come is uncertain due to global warming and repeated bleaching events that will lead to reduced resilience of these ecological and socio-economically important ecosystems. Identifying key refugia is potentially important for future conservation actions. We suggest that the Gulf of Aqaba (GoA) (Red Sea) may serve as a reef refugium due to a unique suite of environmental conditions. Our hypothesis is based on experimental detection of an exceptionally high bleaching threshold of northern Red Sea corals and on the potential dispersal of coral planulae larvae through a selective thermal barrier estimated using an ocean model. We propose that millennia of natural selection in the form of a thermal barrier at the southernmost end of the Red Sea have selected coral genotypes that are less susceptible to thermal stress in the northern Red Sea, delaying bleaching events in the GoA by at least a century.


Assuntos
Antozoários/fisiologia , Recifes de Corais , Seleção Genética , Animais , Antozoários/genética , Antozoários/crescimento & desenvolvimento , Temperatura Alta , Oceano Índico , Israel , Larva/genética , Larva/fisiologia , Dinâmica Populacional , Estações do Ano
11.
Proc Natl Acad Sci U S A ; 107(6): 2527-31, 2010 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-20133799

RESUMO

Worldwide, many marine coastal habitats are facing rapid deterioration due in part to human-driven changes in habitat characteristics, including changes in flow patterns, a factor known to greatly affect primary production in corals, algae, and seagrasses. The effect of flow traditionally is attributed to enhanced influx of nutrients and dissolved inorganic carbon (DIC) across the benthic boundary layer from the water to the organism however, here we report that the organism's photosynthetic response to changes in the flow is nearly instantaneous, and that neither nutrients nor DIC limits this rapid response. Using microelectrodes, dual-pulse amplitude-modulated fluorometry, particle image velocimetry, and real time mass-spectrometry with the common scleractinian coral Favia veroni, the alga Gracilaria cornea, and the seagrass Halophila stipulacea, we show that this augmented photosynthesis is due to flow-driven enhancement of oxygen efflux from the organism to the water, which increases the affinity of the RuBisCO to CO(2). No augmentation of photosynthesis was found in the absence of flow or when flow occurred, but the ambient concentration of oxygen was artificially elevated. We suggest that water motion should be considered a fundamental factor, equivalent to light and nutrients, in determining photosynthesis rates in marine benthic autotrophs.


Assuntos
Ecossistema , Oxigênio/metabolismo , Fotossíntese/fisiologia , Movimentos da Água , Algoritmos , Animais , Antozoários/fisiologia , Dióxido de Carbono/metabolismo , Fluorometria/instrumentação , Fluorometria/métodos , Gracilaria/fisiologia , Hydrocharitaceae/fisiologia , Cinética , Biologia Marinha , Espectrometria de Massas/métodos , Microeletrodos , Ribulose-Bifosfato Carboxilase/metabolismo , Água do Mar/química
12.
Ecol Evol ; 13(12): e10798, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38099138

RESUMO

Back-to-back marine heatwaves in 2016 and 2017 resulted in severe coral bleaching and mortality across the Great Barrier Reef (GBR). Encouragingly, some corals that survived these events exhibit increased bleaching resistance and may represent thermally tolerant populations that can better cope with ocean warming. Using the GBR as a natural laboratory, we investigated whether a history of minimal (Heron Island) or severe (Lizard Island) coral bleaching in 2016 and 2017 equates to stress tolerance in a successive heatwave (2020). We examined the genetic diversity, physiological performance, and trophic plasticity of juvenile (<10 cm) and adult (>25 cm) corals of two common genera (Pocillopora and Stylophora). Despite enduring greater cumulative heat stress (6.3°C week-1 vs. 5.6°C week-1), corals that experienced the third marine heatwave in 5 years (Lizard) exhibited twice as high survival and visual bleaching thresholds compared to corals that had not experienced significant bleaching in >10 years (Heron). Surprisingly, only one shared host-Symbiodiniaceae association was uncovered between locations (Stylophora pistillata-Cladocopium "C8 group") and there was no genetic overlap in Pocillopora-Cladocopium partnerships, suggesting turnover in species composition from recent marine heatwaves. Corals within the species complex Pocillopora that survived the 2016 and 2017 marine heatwaves at Lizard Island were the most resilient, exhibiting three times greater calcification rates than conspecifics at Heron Island. Further, surviving corals (Lizard) had distinct isotopic niches, lower host carbon, and greater host protein, while conspecifics that had not experienced recent bleaching (Heron) had two times greater symbiont carbon content, suggesting divergent trophic strategies that influenced survival (i.e., greater reliance on heterotrophy vs. symbiont autotrophy, respectively). Ultimately, while corals may experience less bleaching and survive repeated thermal stress events, species-specific trade-offs do occur, leaving open many questions related to the long-term health and recovery of coral reef ecosystems in the face of intensifying marine heatwaves.

13.
Nat Microbiol ; 2(12): 1696, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29057995

RESUMO

In the version of this Letter originally published, the authors incorrectly stated that primers 28F-519R were reported in ref. 54 to underestimate the abundance of SAR11 in the ocean. This statement has now been amended in all versions of the Letter.

14.
Nat Microbiol ; 2(12): 1608-1615, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28970475

RESUMO

Oceanic ecosystems are dominated by minute microorganisms that play a major role in food webs and biogeochemical cycles 1 . Many microorganisms thrive in the dilute environment due to their capacity to locate, attach to, and use patches of nutrients and organic matter 2,3 . We propose that some free-living planktonic bacteria have traded their ability to stick to nutrient-rich organic particles for a non-stick cell surface that helps them evade predation by mucous filter feeders. We used a combination of in situ sampling techniques and next-generation sequencing to study the biological filtration of microorganisms at the phylotype level. Our data indicate that some marine bacteria, most notably the highly abundant Pelagibacter ubique and most other members of the SAR 11 clade of the Alphaproteobacteria, can evade filtration by slipping through the mucous nets of both pelagic and benthic tunicates. While 0.3 µm polystyrene beads and other similarly-sized bacteria were efficiently filtered, SAR11 members were not captured. Reversed-phase chromatography revealed that most SAR11 bacteria have a much less hydrophobic cell surface than that of other planktonic bacteria. Our data call for a reconsideration of the role of surface properties in biological filtration and predator-prey interactions in aquatic systems.


Assuntos
Alphaproteobacteria/metabolismo , Proteínas de Bactérias/metabolismo , Extensões da Superfície Celular , Interações Hidrofóbicas e Hidrofílicas , Água do Mar/microbiologia , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Organismos Aquáticos/metabolismo , Bactérias , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Extensões da Superfície Celular/genética , Extensões da Superfície Celular/metabolismo , Cadeia Alimentar , França , Mar Mediterrâneo , Oceanos e Mares , Poliestirenos/química , RNA Ribossômico 16S/genética , Propriedades de Superfície
15.
PLoS One ; 9(3): e92935, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24667529

RESUMO

Copepods are among the most abundant and diverse groups of mesozooplankton in the world's oceans. Each species has a certain depth range within which different individuals (of the same life stage and sex) are found. Lipids are accumulated in many calanoid copepods for energy storage and reproduction. Lipid content in some species increases with depth, however studies so far focused mostly on temperate and high-latitude seasonal vertically migrating copepods and compared lipid contents among individuals either from coarse layers or between diapausing, deep-dwelling copepods and individuals found in the photic, near-surface layer. Here we examined whether lipid contents of individual calanoid copepods of the same species, life stage/sex differ between finer depth layers within the upper water column of subtropical and Arctic seas. A total of 6 calanoid species were collected from samples taken at precise depths within the photic layer in both cold eutrophic and warm oligotrophic environments using SCUBA diving, MOCNESS and Multinet. Measurements of lipid content were obtained from digitized photographs of the collected individuals. The results revealed significant differences in lipid content across depth differences as small as 12-15 meters for Mecynocera clausi C5 and Ctenocalanus vanus C5 (Red Sea), Clausocalanus furcatus males and two clausocalanid C5s (Mediterranean Sea), and Calanus glacialis C5 (Arctic). We suggest two possible explanations for the differences in lipid content with depth on such a fine scale: predator avoidance and buoyancy.


Assuntos
Copépodes/metabolismo , Metabolismo dos Lipídeos , Animais , Regiões Árticas , Copépodes/crescimento & desenvolvimento , Feminino , Estágios do Ciclo de Vida , Masculino , Oceanografia , Densidade Demográfica , Água do Mar , Fatores Sexuais , Temperatura , Clima Tropical
16.
PLoS One ; 8(12): e82391, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24358178

RESUMO

Most herbivorous coral-reef fishes feed slower in the morning than in the afternoon. Given the typical scarcity of algae in coral reefs, this behavior seems maladaptive. Here we suggest that the fishes' slow feeding during the morning is an outcome of highly selective feeding on scarcely found green algae. The rarity of the food requires longer search time and extended swimming tracks, resulting in lower bite rates. According to our findings by noon the fish seem to stop their search and switch to indiscriminative consumption of benthic algae, resulting in apparent higher feeding rates. The abundance of the rare preferable algae gradually declines from morning to noon and seems to reach its lowest levels around the switch time. Using in situ experiments we found that the feeding pattern is flexible, with the fish exhibiting fast feeding rates when presented with ample supply of preferable algae, regardless of the time of day. Analyses of the fish's esophagus content corroborated our conclusion that their feeding was highly selective in the morning and non-selective in the afternoon. Modeling of the fishes' behavior predicted that the fish should perform a diel diet shift when the preferred food is relatively rare, a situation common in most coral reefs found in a warm, oligotrophic ocean.


Assuntos
Recifes de Corais , Dieta , Comportamento Alimentar/fisiologia , Peixes/fisiologia , Preferências Alimentares/fisiologia , Herbivoria/fisiologia , Animais
17.
Oecologia ; 146(2): 329-36, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16086167

RESUMO

Fish that feed on individual zooplankton usually exhibit strong selectivity for large prey. Such selectivity can result from the predator's active choice of larger prey or from differential encounter rate due to lower detectability of small prey, or both. In diurnal fishes, selectivity is thought to be determined mostly by active choice. In spite of a lack of direct observations, active choice is also considered the prevailing mechanism of prey selectivity in nocturnal fishes. Our objective was to resolve this mechanism in the highly selective, nocturnal zooplanktivorous fish Apogon annularis. Laboratory experiments indicated that the fish's encounter rate with small prey was lower than that with large prey and that its selectivity became stronger with decreasing light intensity. Feeding efficiency, defined as the ratio between feeding and encounter rates, ranged 41-89% and was positively correlated with prey size. When feeding on a mixture of prey sizes, the fish fed on each size group at a rate similar to that of its feeding on the respective size alone, indicating that selectivity in A. annularis was due to size-dependent encounter rate and differential feeding efficiency. A low visual acuity in A. annularis, as inferred from its inability to detect small prey (<0.9 mm in length), together with the low abundance of large zooplankton in situ, can explain the dominance of differential encounter over active choice in this nocturnal coral-reef fish.


Assuntos
Escuridão , Comportamento Alimentar/fisiologia , Perciformes/fisiologia , Comportamento Predatório/fisiologia , Animais , Tamanho Corporal , Comportamento Alimentar/efeitos da radiação , Comportamento Predatório/efeitos da radiação , Zooplâncton
18.
Science ; 308(5723): 860-2, 2005 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-15879218

RESUMO

Zooplankton reside in a constantly flowing environment. However, information about their response to ambient flow has remained elusive, because of the difficulties of following the individual motions of these minute, nearly transparent animals in the ocean. Using a three-dimensional acoustic imaging system, we tracked >375,000 zooplankters at two coastal sites in the Red Sea. Resolution of their motion from that of the water showed that the animals effectively maintained their depth by swimming against upwelling and downwelling currents moving at rates of up to tens of body lengths per second, causing their accumulation at frontal zones. This mechanism explains how oceanic fronts become major feeding grounds for predators and targets for fishermen.


Assuntos
Água do Mar , Movimentos da Água , Zooplâncton/fisiologia , Animais , Sinais (Psicologia) , Oceano Índico , Movimento , Comportamento Predatório , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA