Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Eukaryot Microbiol ; : e13041, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38952030

RESUMO

Glaucophytes, an enigmatic group of freshwater algae, occupy a pivotal position within the Archaeplastida, providing insights into the early evolutionary history of plastids and their host cells. These algae possess unique plastids, known as cyanelles that retain certain ancestral features, enabling a better understanding of the plastid transition from cyanobacteria. In this study, we investigated the role of ethylene, a potent hormone used by land plants to coordinate stress responses, in the glaucophyte alga Cyanophora paradoxa. We demonstrate that C. paradoxa produces gaseous ethylene when supplied with exogenous 1-aminocyclopropane-1-carboxylic acid (ACC), the ethylene precursor in land plants. In addition, we show that cells produce ethylene natively in response to abiotic stress, and that another plant hormone, abscisic acid (ABA), interferes with ethylene synthesis from exogenously supplied ACC, while positively regulating reactive oxygen species (ROS) accumulation. ROS synthesis also occurred following abiotic stress and ACC treatment, possibly acting as a second messenger in stress responses. A physiological response of C. paradoxa to ACC treatment is growth inhibition. Using transcriptomics, we reveal that ACC treatment induces the upregulation of senescence-associated proteases, consistent with the observation of growth inhibition. This is the first report of hormone usage in a glaucophyte alga, extending our understanding of hormone-mediated stress response coordination into the Glaucophyta, with implications for the evolution of signaling modalities across Archaeplastida.

2.
Biochem Soc Trans ; 50(1): 609-620, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35225336

RESUMO

Photosymbioses, intimate interactions between photosynthetic algal symbionts and heterotrophic hosts, are well known in invertebrate and protist systems. Vertebrate animals are an exception where photosynthetic microorganisms are not often considered part of the normal vertebrate microbiome, with a few exceptions in amphibian eggs. Here, we review the breadth of vertebrate diversity and explore where algae have taken hold in vertebrate fur, on vertebrate surfaces, in vertebrate tissues, and within vertebrate cells. We find that algae have myriad partnerships with vertebrate animals, from fishes to mammals, and that those symbioses range from apparent mutualisms to commensalisms to parasitisms. The exception in vertebrates, compared with other groups of eukaryotes, is that intracellular mutualisms and commensalisms with algae or other microbes are notably rare. We currently have no clear cell-in-cell (endosymbiotic) examples of a trophic mutualism in any vertebrate, while there is a broad diversity of such interactions in invertebrate animals and protists. This functional divergence in vertebrate symbioses may be related to vertebrate physiology or a byproduct of our adaptive immune system. Overall, we see that diverse algae are part of the vertebrate microbiome, broadly, with numerous symbiotic interactions occurring across all vertebrate and many algal clades. These interactions are being studied for their ecological, organismal, and cellular implications. This synthesis of vertebrate-algal associations may prove useful for the development of novel therapeutics: pairing algae with medical devices, tissue cultures, and artificial ecto- and endosymbioses.


Assuntos
Plantas , Simbiose , Animais , Eucariotos/fisiologia , Mamíferos , Fotossíntese , Simbiose/fisiologia , Vertebrados
3.
J Exp Bot ; 73(7): 2190-2205, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35032388

RESUMO

Arabidopsis thaliana mitogen-activated protein kinases 3 and 6 (MPK3/6) are activated transiently during pathogen-associated molecular pattern-triggered immunity (PTI) and durably during effector-triggered immunity (ETI). The functional differences between these two kinds of activation kinetics and how they coordinate the two layers of plant immunity remain poorly understood. Here, by suppressor analyses, we demonstrate that ETI-mediating nucleotide-binding domain leucine-rich repeat receptors (NLRs) and the NLR signaling components NDR1 and EDS1 can promote the salicylic acid sector of defense downstream of MPK3 activity. Moreover, we provide evidence that both sustained and transient MPK3/6 activities positively control the expression of several NLR genes, including AT3G04220 and AT4G11170. We further show that NDR1 and EDS1 contribute to the up-regulation of these two NLRs in both an ETI and a PTI context. Remarkably, whereas in ETI MPK3/6 activities are dependent on NDR1 and EDS1, they are not in PTI, suggesting crucial differences in the two signaling pathways. Finally, we demonstrate that expression of the NLR AT3G04220 is sufficient to induce expression of defense genes from the salicylic acid branch. Overall, this study expands our knowledge of MPK3/6 functions during immunity and provides new insights into the intricate interplay of PTI and ETI.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Imunidade Vegetal/genética , Ácido Salicílico/metabolismo , Transdução de Sinais/genética
4.
Plant Physiol ; 174(2): 1238-1249, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28400495

RESUMO

Mitogen-activated protein kinases (MAPKs) are important regulators of plant immunity. Most of the knowledge about the function of these pathways is derived from loss-of-function approaches. Using a gain-of-function approach, we investigated the responses controlled by a constitutively active (CA) MPK3 in Arabidopsis thalianaCA-MPK3 plants are dwarfed and display a massive derepression of defense genes associated with spontaneous cell death as well as the accumulation of reactive oxygen species, phytoalexins, and the stress-related hormones ethylene and salicylic acid (SA). Remarkably CA-MPK3/sid2 and CA-MPK3/ein2-50 lines, which are impaired in SA synthesis and ethylene signaling, respectively, retain most of the CA-MPK3-associated phenotypes, indicating that the constitutive activity of MPK3 can bypass SA and ethylene signaling to activate defense responses. A comparative analysis of the molecular phenotypes of CA-MPK3 and mpk4 autoimmunity suggested convergence between the MPK3- and MPK4-guarding modules. In support of this model, CA-MPK3 crosses with summ1 and summ2, two known suppressors of mpk4, resulted in a partial reversion of the CA-MPK3 phenotypes. Overall, our data unravel a novel mechanism by which the MAPK signaling network contributes to a robust defense-response system.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/imunologia , Proteínas de Transporte/metabolismo , Resistência à Doença , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Ácido Salicílico/metabolismo , Arabidopsis/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Etilenos/metabolismo , Flagelina/farmacologia , Genes de Plantas , Indóis/metabolismo , Metaboloma/efeitos dos fármacos , Modelos Biológicos , Mutação/genética , Moléculas com Motivos Associados a Patógenos/metabolismo , Fenótipo , Imunidade Vegetal/efeitos dos fármacos , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio/metabolismo , Escopoletina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/genética , Tiazóis/metabolismo
5.
Sci Adv ; 10(3): eadj4960, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38232174

RESUMO

Revolutionary advancements in underwater imaging, robotics, and genomic sequencing have reshaped marine exploration. We present and demonstrate an interdisciplinary approach that uses emerging quantitative imaging technologies, an innovative robotic encapsulation system with in situ RNA preservation and next-generation genomic sequencing to gain comprehensive biological, biophysical, and genomic data from deep-sea organisms. The synthesis of these data provides rich morphological and genetic information for species description, surpassing traditional passive observation methods and preserved specimens, particularly for gelatinous zooplankton. Our approach enhances our ability to study delicate mid-water animals, improving research in the world's oceans.


Assuntos
Robótica , Zooplâncton , Animais , Oceanos e Mares , Zooplâncton/genética , Água , Gelatina
6.
Sci Data ; 11(1): 679, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914539

RESUMO

We present 4k video and whole transcriptome data for seven deep-sea invertebrate animals collected in the Eastern Pacific Ocean during a research expedition onboard the Schmidt Ocean Institute's R/V Falkor in August of 2021. The animals include one jellyfish (Atolla sp.), three siphonophores (Apolemia sp., Praya sp., and Halistemma sp.), one larvacean (Bathochordaeus mcnutti), one tunicate (Pyrosomatidae sp.), and one ctenophore (Lampocteis sp.). Four of the animals were sequenced with long-read RNA sequencing technology, such that the reads themselves define a reference assembly for those animals. The larvacean tissues were successfully preserved in situ and has paired long-read reference data and short read quantitative transcriptomic data for within-specimen analyses of gene expression. Additionally, for three animals we provide quantitative image data, and a 3D model for one siphonophore. The paired image and transcriptomic data can be used for species identification, species description, and reference genetic data for these deep-sea animals.


Assuntos
Invertebrados , Transcriptoma , Animais , Invertebrados/genética , Oceano Pacífico , Organismos Aquáticos/genética , Análise de Sequência de RNA
7.
Plant Signal Behav ; 12(8): e1356533, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28766995

RESUMO

Mitogen Activated Protein Kinases (MAPKs) are known to be important mediators of plant responses to biotic and abiotic stresses. In a recent report, we enlarged the understanding of the Arabidopsis thaliana MPK3 functions showing that the expression of a constitutively active (CA) form of the protein led to auto-immune phenotypes. CA-MPK3 plants are dwarf and display defense responses that are characterized by the accumulation of salicylic acid and phytoalexins as well as by the upregulation of several defense genes. Consistently with these data, we present here results demonstrating that, compared with wild type controls, CA-MPK3 plants are more resistant to the hemibiotrophic pathogen Pseudomonas syringae DC3000. Based on our previous work, we also discuss the mechanisms of robust plant immunity controlled by sustained MPK3 activity, focusing especially on the roles of disease resistance proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/microbiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Imunidade Vegetal , Pseudomonas syringae/fisiologia , Arabidopsis/genética , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia
8.
Genome Biol ; 18(1): 131, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28683804

RESUMO

BACKGROUND: Microbial-associated molecular patterns activate several MAP kinases, which are major regulators of the innate immune response in Arabidopsis thaliana that induce large-scale changes in gene expression. Here, we determine whether microbial-associated molecular pattern-triggered gene expression involves modifications at the chromatin level. RESULTS: Histone acetylation and deacetylation are major regulators of microbial-associated molecular pattern-triggered gene expression and implicate the histone deacetylase HD2B in the reprogramming of defence gene expression and innate immunity. The MAP kinase MPK3 directly interacts with and phosphorylates HD2B, thereby regulating the intra-nuclear compartmentalization and function of the histone deacetylase. CONCLUSIONS: By studying a number of gene loci that undergo microbial-associated molecular pattern-dependent activation or repression, our data reveal a mechanistic model for how protein kinase signaling directly impacts chromatin reprogramming in plant defense.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Montagem e Desmontagem da Cromatina , Cromatina/fisiologia , Histona Desacetilases/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Imunidade Vegetal , Flagelina/imunologia , Histonas/metabolismo , Imunidade Inata , Fosforilação , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA