Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioelectrochemistry ; 151: 108379, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36736178

RESUMO

Cytochrome bd-I catalyzes the reduction of oxygen to water with the aid of hemes b558, b595 and d. Here, effects of a mutation of E445, a ligand of heme b595 and of R448, hydrogen bonded to E445 are studied electrochemically in the E. coli enzyme. The equilibrium potential of the three hemes are shifted by up to 200 mV in these mutants. Strikingly the E445D and the R448N mutants show a turnover of 41 ± 2 % and 20 ± 4 %, respectively. Electrocatalytic studies confirm that the mutants react with oxygen and bind and release NO. These results point towards the ability of cytochrome bd to react even if the electron transfer is less favorable.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Citocromos/genética , Citocromos/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Transporte de Elétrons , Oxigênio/metabolismo , Oxirredução
2.
Biochim Biophys Acta Bioenerg ; 1864(2): 148952, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36535430

RESUMO

Escherichia coli contains two cytochrome bd oxidases, bd-I and bd-II. The structure of both enzymes is highly similar, but they exhibit subtle differences such as the accessibility of the active site through a putative proton channel. Here, we demonstrate that the duroquinol:dioxygen oxidoreductase activity of bd-I increased with alkaline pH, whereas bd-II showed a broad activity maximum around pH 7. Likewise, the pH dependence of NO release from the reduced active site, an essential property of bd oxidases, differed between the two oxidases as detected by UV/vis spectroscopy. Both findings may be attributed to differences in the proton channel leading to the active site heme d. The channel comprises a titratable residue (Asp58B in bd-I and Glu58B in bd-II). Conservative mutations at this position drastically altered NO release demonstrating its contribution to the process.


Assuntos
Proteínas de Escherichia coli , Oxirredutases , Oxirredutases/metabolismo , Escherichia coli , Citocromos/química , Prótons , Proteínas de Escherichia coli/metabolismo , Grupo dos Citocromos b/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons , Concentração de Íons de Hidrogênio
3.
Sci Rep ; 13(1): 7652, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169846

RESUMO

NADH:ubiquinone oxidoreductase, respiratory complex I, plays a major role in cellular energy metabolism by coupling electron transfer with proton translocation. Electron transfer is catalyzed by a flavin mononucleotide and a series of iron-sulfur (Fe/S) clusters. As a by-product of the reaction, the reduced flavin generates reactive oxygen species (ROS). It was suggested that the ROS generated by the respiratory chain in general could damage the Fe/S clusters of the complex. Here, we show that the binuclear Fe/S cluster N1b is specifically damaged by H2O2, however, only at high concentrations. But under the same conditions, the activity of the complex is hardly affected, since N1b can be easily bypassed during electron transfer.


Assuntos
Complexo I de Transporte de Elétrons , Proteínas Ferro-Enxofre , Complexo I de Transporte de Elétrons/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Peróxido de Hidrogênio/metabolismo , Ferro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transporte de Elétrons , Enxofre/metabolismo , Oxirredução , Espectroscopia de Ressonância de Spin Eletrônica
4.
Structure ; 30(1): 80-94.e4, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34562374

RESUMO

Respiratory complex I drives proton translocation across energy-transducing membranes by NADH oxidation coupled with (ubi)quinone reduction. In humans, its dysfunction is associated with neurodegenerative diseases. The Escherichia coli complex represents the structural minimal form of an energy-converting NADH:ubiquinone oxidoreductase. Here, we report the structure of the peripheral arm of the E. coli complex I consisting of six subunits, the FMN cofactor, and nine iron-sulfur clusters at 2.7 Å resolution obtained by cryo electron microscopy. While the cofactors are in equivalent positions as in the complex from other species, individual subunits are adapted to the absence of supernumerary proteins to guarantee structural stability. The catalytically important subunits NuoC and D are fused resulting in a specific architecture of functional importance. Striking features of the E. coli complex are scrutinized by mutagenesis and biochemical characterization of the variants. Moreover, the arrangement of the subunits sheds light on the unknown assembly of the complex.


Assuntos
Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Escherichia coli/metabolismo , Mutação , Sítios de Ligação , Microscopia Crioeletrônica , Complexo I de Transporte de Elétrons/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Estabilidade Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA