Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Hazard Mater ; 160(1): 135-41, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18417286

RESUMO

Cellulose and paper pulp factories utilize a large amount of water generating several undesirable contaminants. The present work is a preliminary investigation that associates the electrocoagulation-flotation (EC) method followed by photocatalysis to treat such wastewater. For EC, the experiment with aluminium and iron electrodes showed similar efficiency. Iron electrodes (anode and cathode) were chosen. By applying 30min of EC/Fe(0), 153A m(-2) and pH 6.0, the COD values, UV-vis absorbance and turbidity underwent an intense decrease. For the subsequent UV photocatalysis (mercury lamps) TiO(2) was employed and the favourable operational conditions found were 0.25g L(-1) of the catalyst and solution pH 3.0. The addition of hydrogen peroxide (50mmol L(-1)) highly increased the photo-process performance. By employing the UV/TiO(2)/H(2)O(2) system, the COD reduction was 88% compared to pre-treated effluents and complete sample photobleaching was verified. The salt concentration on EC (iron electrodes) showed that the electrolysis duration can be reduced from 30 to 10min by the addition of 5.0g L(-1) of NaCl. The biodegradability index (BOD/COD) increased from 0.15 (pre-treated) to 0.48 (after EC) and to 0.89 (after EC/photocatalysis irradiated for 6h), showing that the employed sequence is very helpful to improve the water quality. This result was confirmed by biotoxicity tests performed with microcrustaceous Artemia salina.


Assuntos
Celulose , Resíduos Industriais/análise , Papel , Eliminação de Resíduos Líquidos/métodos , Animais , Artemia , Biodegradação Ambiental , Brasil , Catálise , Eletroquímica , Indicadores e Reagentes , Resíduos Industriais/legislação & jurisprudência , Fotoquímica , Titânio/química , Raios Ultravioleta , Eliminação de Resíduos Líquidos/legislação & jurisprudência , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 173: 213-221, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27665188

RESUMO

The spectrophotometric properties of chlorophylls' derivatives (Chls) formulated in the Pluronics® F-127 and P-123 were evaluated and the results have shown that the Chls were efficiently solubilized in these drug delivery systems as monomers. The relative location of the Chls in the Pluronics® was estimated from the Stokes shift and micropolarity of the micellar environment. Chls with phytyl chain were located in the micellar core, where the micropolarity is similar to ethanol, while phorbides' derivatives (without phytyl chain) were located in the outer shell of the micelle, i.e., more polar environment. In addition, the thermal stability of the micellar formulations was evaluated through electronic absorption, fluorescence emission and resonance light scattering with lowering the temperature. The Chls promote the stability of the micelles at temperatures below the Critical Micellar Temperature (CMT) of these surfactants. For F-127 formulations, the water molecules drive through inside the nano-structure at temperatures below the CMT, which increased the polarity of this microenvironment and directly affected the spectrophotometric properties of the Chls with phytyl chain. The properties of the micellar microenvironment of P-123, with more hydrophobic core due to the small PEO/PPO fraction, were less affected by lowering the temperature than for F-127. These results enable us to better understand the Chls behavior in micellar copolymers and allowed us to design new drug delivery system that maintains the photosensitizer's properties for photodynamic applications.


Assuntos
Clorofila/química , Sistemas de Liberação de Medicamentos/métodos , Poloxaleno/química , Poloxâmero/química , Tensoativos/química , Estabilidade de Medicamentos , Fluorescência , Interações Hidrofóbicas e Hidrofílicas , Micelas , Fotoquimioterapia/métodos , Temperatura
3.
Photodiagnosis Photodyn Ther ; 19: 256-265, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28587855

RESUMO

BACKGROUND: Approximately 6-7 million people are infected with Trypanosoma cruzi, the etiological agent of Chagas' disease. Only two therapeutic compounds have been found to be useful against this disease: nifurtimox and benznidazole. These drugs have been effective in the acute phase of the disease but less effective in the chronic phase; they also have many side effects. Thus, the search for new compounds with trypanocidal action is necessary. Natural products can be the source of many important substances for the development of drugs to treat this infection. The present study evaluated the biological activity of an extract and fractions of Arrabidaea chica against T. cruzi and observed morphological and ultrastructural characteristics of parasites exposed to the isolated compound pheophorbide a. METHODS: The crude hydroethanolic extract of A. chica was prepared. Fractions were obtained by partition and separated by liquid chromatography. RESULTS: We observed a progressive increase in activity against epimastigote, trypomastigote, and amastigote forms of the parasite over the course of the fractionation process. Interestingly, we isolated a compound known as a photosensitizer that is used in photodynamic therapy. This method of treatment involving a photosensitizer, activation light and molecular oxygen is of great importance due to its selectivity. Pheophorbide a had activity against the protozoan in the presence of light and caused morphological and ultrastructural changes, demonstrating its potential in photodynamic therapy. CONCLUSIONS: Based on the ability of pheophorbide a to eliminate bloodstream forms of T. cruzi, we suggest its use in blood banks for hemoprophylaxis.


Assuntos
Clorofila/análogos & derivados , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Extratos Vegetais/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Linhagem Celular , Clorofila/farmacologia , Haplorrinos
4.
Photochem Photobiol ; 91(3): 518-25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25644689

RESUMO

Aluminum Chloride Phthalocyanine (AlPcCl) can be used as a photosensitizer (PS) for Photodynamic Inactivation of Microorganisms (PDI). The AlPcCl showed favorable characteristics for PDI due to high quantum yield of singlet oxygen (ΦΔ ) and photostability. Physicochemical properties and photodynamic inactivation of AlPcCl incorporated in polymeric micelles of tri-block copolymer (P-123 and F-127) against microorganisms Staphylococcus aureus, Escherichia coli and Candida albicans were investigated in this work. Previously, it was observed that the AlPcCl undergoes self-aggregation in F-127, while in P-123 the PS is in a monomeric form suitable for PDI. Due to the self-aggregation of AlPcCl in F-127, this formulation did not show any effect on these microorganisms. On the other hand, AlPcCl formulated in P-123 was effective against S. aureus and C. albicans and the death of microorganisms was dependent on the PS concentration and illumination time. Additionally, it was found that the values of PS concentration and illumination time to eradicate 90% of the initial population of microorganisms (IC90 and D90 , respectively) were small for the AlPcCl in P-123, showing the effectiveness of this formulation for PDI.


Assuntos
Candida albicans/efeitos dos fármacos , Indóis/química , Micelas , Viabilidade Microbiana/efeitos dos fármacos , Compostos Organometálicos/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Poloxâmero/análogos & derivados , Poloxâmero/química , Staphylococcus aureus/efeitos dos fármacos , Cloreto de Alumínio , Luz , Fármacos Fotossensibilizantes/efeitos da radiação , Poloxâmero/farmacologia , Staphylococcus aureus/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA