Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Org Chem ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38442262

RESUMO

The adoption of new and emerging techniques in organic synthesis is essential to promote innovation in drug discovery. In this Perspective, we detail the strategy we used for the systematic deployment of photoredox-mediated, metal-catalyzed cross-coupling reactions in AbbVie's medicinal chemistry organization, focusing on topics such as assessment, evaluation, implementation, and accessibility. The comprehensive evaluation of photoredox reaction setups and published methods will be discussed, along with internal efforts to build expertise and photoredox high-throughput experimentation capabilities. We also highlight AbbVie's academic-industry collaborations in this field that have been leveraged to develop new synthetic strategies, along with discussing the internal adoption of photoredox cross-coupling reactions. The work described herein has culminated in robust photocatalysis and cross-coupling capabilities which are viewed as key platforms for medicinal chemistry research at AbbVie.

2.
Nature ; 557(7704): 228-232, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29686415

RESUMO

Most drugs are developed through iterative rounds of chemical synthesis and biochemical testing to optimize the affinity of a particular compound for a protein target of therapeutic interest. This process is challenging because candidate molecules must be selected from a chemical space of more than 1060 drug-like possibilities 1 , and a single reaction used to synthesize each molecule has more than 107 plausible permutations of catalysts, ligands, additives and other parameters 2 . The merger of a method for high-throughput chemical synthesis with a biochemical assay would facilitate the exploration of this enormous search space and streamline the hunt for new drugs and chemical probes. Miniaturized high-throughput chemical synthesis3-7 has enabled rapid evaluation of reaction space, but so far the merger of such syntheses with bioassays has been achieved with only low-density reaction arrays, which analyse only a handful of analogues prepared under a single reaction condition8-13. High-density chemical synthesis approaches that have been coupled to bioassays, including on-bead 14 , on-surface 15 , on-DNA 16 and mass-encoding technologies 17 , greatly reduce material requirements, but they require the covalent linkage of substrates to a potentially reactive support, must be performed under high dilution and must operate in a mixture format. These reaction attributes limit the application of transition-metal catalysts, which are easily poisoned by the many functional groups present in a complex mixture, and of transformations for which the kinetics require a high concentration of reactant. Here we couple high-throughput nanomole-scale synthesis with a label-free affinity-selection mass spectrometry bioassay. Each reaction is performed at a 0.1-molar concentration in a discrete well to enable transition-metal catalysis while consuming less than 0.05 milligrams of substrate per reaction. The affinity-selection mass spectrometry bioassay is then used to rank the affinity of the reaction products to target proteins, removing the need for time-intensive reaction purification. This method enables the primary synthesis and testing steps that are critical to the invention of protein inhibitors to be performed rapidly and with minimal consumption of starting materials.


Assuntos
Nanotecnologia/métodos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Proteínas/química , Bioensaio , Catálise , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Quinase 1 do Ponto de Checagem/química , Avaliação Pré-Clínica de Medicamentos , Cinética , Ligantes , Espectrometria de Massas , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Proteínas/antagonistas & inibidores , Especificidade por Substrato
3.
Beilstein J Org Chem ; 10: 1272-81, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24991279

RESUMO

Triarylpyrylium salts were employed as single electron photooxidants to catalyze a cyclization-endoperoxidation cascade of dienes. The transformation is presumed to proceed via the intermediacy of diene cation radicals. The nature of the diene component was investigated in this context to determine the structural requirements necessary for successful reactivity. Several unique endoperoxide structures were synthesized in yields up to 79%.

4.
ACS Med Chem Lett ; 14(4): 521-529, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37077401

RESUMO

Enthusiasm surrounding nickel/photoredox C(sp2)-C(sp3) cross-couplings is very high; however, these methods are sometimes challenged by complex drug-like substrates in discovery chemistry. In our hands this has been especially true of the decarboxylative coupling, which has lagged behind other photoredox couplings in internal adoption and success. Herein, the development of a photoredox high-throughput experimentation platform to optimize challenging C(sp2)-C(sp3) decarboxylative couplings is described. Chemical-coated glass beads (ChemBeads) and a novel parallel bead dispenser are used to expedite the high-throughput experimentation process and identify improved coupling conditions. In this report, photoredox high-throughput experimentation is utilized to dramatically improve low-yielding decarboxylative C(sp2)-C(sp3) couplings, and libraries, using conditions not previously identified in the literature.

5.
Free Radic Biol Med ; 204: 276-286, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37217089

RESUMO

We developed S1QEL1.719, a novel bioavailable S1QEL (suppressor of site IQ electron leak). S1QEL1.719 prevented superoxide/hydrogen peroxide production at site IQ of mitochondrial complex I in vitro. The free concentration giving half-maximal suppression (IC50) was 52 nM. Even at 50-fold higher concentrations S1QEL1.719 did not inhibit superoxide/hydrogen peroxide production from other sites. The IC50 for inhibition of complex I electron flow was 500-fold higher than the IC50 for suppression of superoxide/hydrogen peroxide production from site IQ. S1QEL1.719 was used to test the metabolic effects of suppressing superoxide/hydrogen peroxide production from site IQin vivo. C57BL/6J male mice fed a high-fat chow for one, two or eight weeks had increased body fat, decreased glucose tolerance, and increased fasting insulin concentrations, classic symptoms of metabolic syndrome. Daily prophylactic or therapeutic oral treatment of high-fat-fed animals with S1QEL1.719 decreased fat accumulation, strongly protected against decreased glucose tolerance and prevented or reversed the increase in fasting insulin level. Free exposures in plasma and liver at Cmax were 1-4 fold the IC50 for suppression of superoxide/hydrogen peroxide production at site IQ and substantially below levels that inhibit electron flow through complex I. These results show that the production of superoxide/hydrogen peroxide from mitochondrial site IQin vivo is necessary for the induction and maintenance of glucose intolerance caused by a high-fat diet in mice. They raise the possibility that oral administration of S1QELs may be beneficial in metabolic syndrome.


Assuntos
Síndrome Metabólica , Superóxidos , Camundongos , Masculino , Animais , Superóxidos/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxidos , Insulina , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Jejum , Tecido Adiposo/metabolismo , Glucose
6.
ACS Med Chem Lett ; 11(4): 597-604, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32292569

RESUMO

Despite recent advances in the field of C(sp2)-C(sp3) cross-couplings and the accompanying increase in publications, it can be hard to determine which method is appropriate for a given reaction when using the highly functionalized intermediates prevalent in medicinal chemistry. Thus a study was done comparing the ability of seven methods to directly install a diverse set of alkyl groups on "drug-like" aryl structures via parallel library synthesis. Each method showed substrates that it excelled at coupling compared with the other methods. When analyzing the reactions run across all of the methods, a reaction success rate of 50% was achieved. Whereas this is promising, there are still gaps in the scope of direct C(sp2)-C(sp3) coupling methods, like tertiary group installation. The results reported herein should be used to inform future syntheses, assess reaction scope, and encourage medicinal chemists to expand their synthetic toolbox.

7.
J Med Chem ; 60(9): 3594-3605, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28252959

RESUMO

Miniaturization and parallel processing play an important role in the evolution of many technologies. We demonstrate the application of miniaturized high-throughput experimentation methods to resolve synthetic chemistry challenges on the frontlines of a lead optimization effort to develop diacylglycerol acyltransferase (DGAT1) inhibitors. Reactions were performed on ∼1 mg scale using glass microvials providing a miniaturized high-throughput experimentation capability that was used to study a challenging SNAr reaction. The availability of robust synthetic chemistry conditions discovered in these miniaturized investigations enabled the development of structure-activity relationships that ultimately led to the discovery of soluble, selective, and potent inhibitors of DGAT1.


Assuntos
Diacilglicerol O-Aciltransferase/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Cromatografia Líquida , Espectrometria de Massas , Espectroscopia de Prótons por Ressonância Magnética
8.
Org Lett ; 17(5): 1316-9, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25695366

RESUMO

In this work we present a direct catalytic synthesis of γ-lactams and pyrrolidines from alkenes and activated unsaturated amides or protected unsaturated amines, respectively. Using a mesityl acridinium single electron photooxidant and a thiophenol cocatalyst under irradiation, we are able to directly forge these important classes of heterocycles with complete regiocontrol.


Assuntos
Amidas/química , Aminas/química , Lactamas/síntese química , Fenóis/química , Pirrolidinas/síntese química , Compostos de Sulfidrila/química , Catálise , Reação de Cicloadição , Lactamas/química , Estrutura Molecular , Oxirredução , Processos Fotoquímicos , Pirrolidinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA