Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 138(42): 13770-13773, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27718553

RESUMO

Thiols and phosphines are the most widely used organic ligands to attain atomically precise metal nanoclusters (NCs). Here, we used simple hydrides (e.g., H-) as ligands along with phosphines, such as triphenylphosphine (TPP), 1,2-bis(diphenylphosphino)ethane [DPPE], and tris(4-fluorophenyl)phosphine [TFPP] to design and synthesize a new class of hydride-rich silver NCs. This class includes [Ag18H16(TPP)10]2+, [Ag25H22(DPPE)8]3+, and [Ag26H22(TFPP)13]2+. Our work reveals a new family of atomically precise NCs protected by H- ligands and labile phosphines, with potentially more accessible active metal sites for functionalization and provides a new set of stable NC sizes with simpler ligand-metal bonding for researchers to explore both experimentally and computationally.

2.
Nat Commun ; 13(1): 2960, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35618799

RESUMO

Mn-based oxides are promising for the selective catalytic reduction (SCR) of NOx with NH3 at temperatures below 200 °C. There is a general agreement that combining Mn with another metal oxide, such as CeOx improves catalytic activity. However, to date, there is an unsettling debate on the effect of Ce. To solve this, here we have systematically investigated a large number of catalysts. Our results show that, at low-temperature, the intrinsic SCR activity of the Mn active sites is not positively affected by Ce species in intimate contact. To confirm our findings, activities reported in literature were surface-area normalized and the analysis do not support an increase in activity by Ce addition. Therefore, we can unequivocally conclude that the beneficial effect of Ce is textural. Besides, addition of Ce suppresses second-step oxidation reactions and thus N2O formation by structurally diluting MnOx. Therefore, Ce is still an interesting catalyst additive.

3.
J Comb Chem ; 11(2): 243-51, 2009 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-19199643

RESUMO

Asymmetric, nanosized zeolite-filled solvent resistant nanofiltration (SRNF) membranes, prepared from emulsified polyimide (PI) solutions via the earlier reported solidification of emulsified polymer solutions via phase inversion (SEPPI) method, were optimized for their performance in the separation of rose bengal (RB) from 2-propanol (IPA). All membranes were prepared and tested in a parallellized, miniaturized, and automated manner using laboratory-developed high-throughput experimentation techniques. Nine different synthesis parameters related to the composition of the casting solutions were thus optimized. In a first, "conventional" approach, a preliminary systematic screening was carried out, in which only four constituents were used, that is, Matrimid PI, NMP as solvent, THF as volatile cosolvent, and an NMP-based zeolite precursor sol as emulsifying agent. A combinatorial strategy, based on a genetic algorithm and a self-adaptive evolutionary strategy, was then applied to optimize the SRNF performance of PI-based SEPPI membranes. This directed approach allowed the screening of an extended, 9-dimensional parameter space, comprising two extra solvents, the two corresponding nanosized zeolite suspensions, as well as another cosolvent. Coupling with high-throughput techniques allowed the preparation of three generations of casting solutions, 176 compositions in total, resulting in 125 testable membranes. With IPA permeances up to 3.3 L.m(-2) h(-1) bar(-1) and RB rejections around 98%, the combinatorially optimized membranes scored significantly better with respect to fluxes and selectivities than the best membranes obtained in the systematic screening. The best SEPPI membranes also showed much higher IPA permeances than two commercial SRNF membranes at similar or slightly lower RB rejections.


Assuntos
Filtração/instrumentação , Imidas/química , Membranas Artificiais , Polímeros/química , Rosa Bengala/isolamento & purificação , 2-Propanol/química , Algoritmos , Emulsões/química , Nanoestruturas/química
4.
Dalton Trans ; 48(19): 6611-6620, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31017165

RESUMO

The direct conversion of propane into aromatics (BTX) using modified ZSM-5 was achieved with a strategy of "catalysis by design". In contrast to the classical mode of action of classical aromatization catalysts which are purely based on acidity, we have designed the catalyst associating two functions: One function (Ti-hydride) was selected to activate the C-H bond of propane by σ-bond metathesis to further obtain olefin by ß-H elimination and the other function (Brønsted acid) being responsible for the oligomerization, cyclization, and aromatization. This bifunctional catalyst was obtained by selectively grafting a bulky organometallic complex of tetrakis(neopentyl)titanium (TiNp4) at the external surface (external silanol ([triple bond, length as m-dash]Si-OH) group) of [H-ZSM-5300] to obtain [Ti/ZSM-5] catalyst 1. This metal was chosen to activate the C-H bond of paraffin at the periphery of the ZSM-5 while maintaining the Brønsted acid properties of the internal [H-ZSM-5] for oligomerization, cyclization, and aromatization. Catalyst 2 [Ti-H/ZSM-5] was obtained after treatment under H2 at 550 °C of freshly prepared catalyst 1 ([Ti/ZSM-5]) and catalyst 1 was thoroughly characterized by ICP analysis, DRIFT, XRD, N2-physisorption, multinuclear solid-state NMR, XPS and HR-TEM analysis including STEM imaging. The conversion of propane to aromatics was studied in a dynamic flow reactor. With the pristine [H-ZSM-5300] catalyst, the conversion of propane is very low. However, with [Ti-H/ZSM-5] catalyst 2 under the same reaction conditions, the conversion of propane remains significant during 60 h of the reaction (ca. 22%). Furthermore, the [Ti-H/ZSM-5] catalyst shows a good and stable selectivity (55%) for aromatics (BTX) of time on stream. With 2, it was found that the Ti remains at the periphery of the [H-ZSM-5] even after reaction time.

5.
ACS Omega ; 3(4): 3688-3701, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31458617

RESUMO

Ni and NiSn supported on zirconia (ZrO2) and on indium (In)-incorporated zirconia (InZrO2) catalysts were prepared by a wet chemical reduction route and tested for hydrogenation of CO2 to methanol in a fixed-bed isothermal flow reactor at 250 °C. The mono-metallic Ni (5%Ni/ZrO2) catalysts showed a very high selectivity for methane (99%) during CO2 hydrogenation. Introduction of Sn to this material with the following formulation 5Ni5Sn/ZrO2 (5% Ni-5% Sn/ZrO2) showed the rate of methanol formation to be 0.0417 µmol/(gcat·s) with 54% selectivity. Furthermore, the combination NiSn supported on InZrO2 (5Ni5Sn/10InZrO2) exhibited a rate of methanol formation 10 times higher than that on 5Ni/ZrO2 (0.1043 µmol/(gcat·s)) with 99% selectivity for methanol. All of these catalysts were characterized by X-ray diffraction, high-resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM), X-ray photoelectron spectroscopy, CO2-temperature-programmed desorption, and density functional theory (DFT) studies. Addition of Sn to Ni catalysts resulted in the formation of a NiSn alloy. The NiSn alloy particle size was kept in the range of 10-15 nm, which was evidenced by HRTEM study. DFT analysis was carried out to identify the surface composition as well as the structural location of each element on the surface in three compositions investigated, namely, Ni28Sn27, Ni18Sn37, and Ni37Sn18 bimetallic nanoclusters, and results were in agreement with the STEM and electron energy-loss spectroscopy results. Also, the introduction of "Sn" and "In" helped improve the reducibility of Ni oxide and the basic strength of catalysts. Considerable details of the catalytic and structural properties of the Ni, NiSn, and NiSnIn catalyst systems were elucidated. These observations were decisive for achieving a highly efficient formation rate of methanol via CO2 by the H2 reduction process with high methanol selectivity.

6.
Chem Commun (Camb) ; (19): 2500-2, 2005 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-15886784

RESUMO

Due to the shape-selectivity of the pores and the induced polymer crosslinking, zeolite filled elastomers are excellent solvent-resistant nanofiltration membranes with enhanced fluxes and retentions compared to commercial membranes, allowing use in non-polar solvents and at high temperatures.


Assuntos
Dimetilpolisiloxanos/química , Membranas Artificiais , Silicones/química , Ultrafiltração/métodos , Zeolitas/química , Catálise , Temperatura Alta , Porosidade , Solventes , Temperatura , Tolueno
7.
Chem Soc Rev ; 37(2): 365-405, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18197351

RESUMO

Over the past decade, solvent resistant nanofiltration (SRNF) has gained a lot of attention, as it is a promising energy- and waste-efficient unit process to separate mixtures down to a molecular level. This critical review focuses on all aspects related to this new burgeoning technology, occasionally also including literature obtained on aqueous applications or related membrane processes, if of relevance to understand SRNF better. An overview of the different membrane materials and the methods to turn them into suitable SRNF-membranes will be given first. The membrane transport mechanism and its modelling will receive attention in order to understand the process and the reported membrane performances better. Finally, all SRNF-applications reported so far - in food chemistry, petrochemistry, catalysis, pharmaceutical manufacturing - will be reviewed exhaustively (324 references).


Assuntos
Membranas Artificiais , Nanotecnologia/métodos , Ultrafiltração/métodos , Estrutura Molecular , Nanotecnologia/instrumentação , Solventes/química , Propriedades de Superfície , Ultrafiltração/instrumentação , Água/química
8.
J Comb Chem ; 8(2): 168-73, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16529511

RESUMO

Combinatorial strategies are for the first time applied in membrane technology and prove to be a powerful new tool in the search for novel membrane materials. The selected system for this study is a polyimide solvent-resistant nanofiltration membrane prepared via phase inversion. The phase inversion process is a typical membrane synthesis procedure involving a large number of compositional components, which can each be varied in a wide concentration range. The optimization of the membrane dope composition was performed using evolutionary optimization via genetic algorithms. Compared with the best commercially available membranes, a substantially improved membrane performance could be realized, both on the level of membrane selectivity and on that of permeability. The miniaturized high-throughput synthesis procedure could be scaled up successfully when the polymer dope was sufficiently viscous. It can be anticipated that application of combinatorial techniques can potentially lead to major improvements in all fields of membrane technology, for example water treatment, gas separation, and dialysis, not only on the compositional level but also for instance on the level of membrane synthesis posttreatment and operational conditions.


Assuntos
Técnicas de Química Combinatória/métodos , Membranas Artificiais , Algoritmos , Imidas , Modelos Genéticos , Solventes
9.
Chemistry ; 11(22): 6754-62, 2005 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-16134201

RESUMO

The convergent synthesis of a series of porphyrin-functionalized pyrimidine dendrimers has been accomplished by a procedure involving the nucleophilic aromatic substitution (NAS) as a key reaction step. The resulting dendritic porphyrin catalysts show high activity in the light-induced generation of singlet oxygen ((1)O2) from ground-state oxygen. These materials are synthetically useful photosensitizers for the oxidation of various olefinic compounds to the corresponding allylic hydroperoxides. Catalytic activities and regio- and stereoselectivities of the dendritic photosensitizers are comparable to those observed for mononuclear porphyrin catalysts. Recycling of the dendrimer-enlarged homogeneous photocatalysts was possible by solvent-resistant nanofiltration (SRNF) by using an oxidatively stable membrane consisting of a polysiloxane polymer and ultrastable Y zeolite as inorganic filler. Moreover, this membrane technology provides a safe way to isolate the hydroperoxide products under very mild conditions. The membrane showed high retention for the macromolecular catalysts, even in chlorinated solvents, but some oxidative degradation of the porphyrin units of the dendrimer was observed over multiple catalytic runs.


Assuntos
Membranas Artificiais , Porfirinas/química , Pirimidinas/síntese química , Catálise , Filtração , Estrutura Molecular , Nanotecnologia , Fotoquímica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA