Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(30): 11185-11194, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37460108

RESUMO

In this study, Np(V) retention on Illite du Puy (IdP) was investigated since it is essential for understanding the migration behavior of Np in argillaceous environments. The presence of structural Fe(III) and Fe(II) in IdP was confirmed by Fe K-edge X-ray absorption near-edge structure (XANES) and 57Fe Mössbauer spectroscopy. In batch sorption experiments, a higher Np sorption affinity to IdP was found than to Wyoming smectite or iron-free synthetic montmorillonite. An increase of the relative Np(IV) ratio sorbed onto IdP with decreasing pH was observed by solvent extraction (up to (24 ± 2)% at pH 5, c0(Np) = 10-6 mol/L). Furthermore, up to (33 ± 5)% Np(IV) could be detected in IdP diffusion samples at pH 5. Respective Np M5-edge high-energy resolution (HR-) XANES spectra suggested the presence of Np(IV/V) mixtures and weakened axial bond covalency of the NpO2+ species sorbed onto IdP. Np L3-edge extended X-ray absorption fine structure (EXAFS) analysis showed that significant fractions of Np were coordinated to Fe─O entities at pH 9. This highlights the potential role of Fe(II/III) clay edge sites as a strong Np(V) surface complex partner and points to the partial reduction of sorbed Np(V) to Np(IV) via structural Fe(II).


Assuntos
Compostos Férricos , Minerais , Minerais/química , Bentonita/química , Compostos Ferrosos/química
2.
Anal Chem ; 89(13): 7182-7189, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28598602

RESUMO

The multiactinide analysis with accelerator mass spectrometry (AMS) was applied to samples collected from the run 13-05 of the Colloid Formation and Migration (CFM) experiment at the Grimsel Test Site (GTS). In this in situ radionuclide tracer test, the environmental behavior of 233U, 237Np, 242Pu, and 243Am was investigated in a water conductive shear zone under conditions relevant for a nuclear waste repository in crystalline rock. The concentration of the actinides in the GTS groundwater was determined with AMS over 6 orders of magnitude from ∼15 pg/g down to ∼25 ag/g. Levels above 10 fg/g were investigated with both sector field inductively coupled plasma mass spectrometry (SF-ICPMS) and AMS. Agreement within a relative uncertainty of 50% was found for 237Np, 242Pu, and 243Am concentrations determined with the two analytical methods. With the extreme sensitivity of AMS, the long-term release and retention of the actinides was investigated over 8 months in the tailing of the breakthrough curve of run 13-05 as well as in samples collected up to 22 months after. Furthermore, the evidence of masses 241 and 244 u in the CFM samples most probably representing 241Am and 244Pu employed in a previous tracer test demonstrated the analytical capability of AMS for in situ studies lasting more than a decade.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA