RESUMO
Cancer progression results from activation of various signaling networks. Among these, PI3K/Akt signaling contributes to proliferation, invasion, and inhibition of apoptosis. Hepatocellular carcinoma (HCC) is a primary liver cancer with high incidence rate, especially in regions with high prevalence of viral hepatitis infection. Autoimmune disorders, diabetes mellitus, obesity, alcohol consumption, and inflammation can also lead to initiation and development of HCC. The treatment of HCC depends on the identification of oncogenic factors that lead tumor cells to develop resistance to therapy. The present review article focuses on the role of PI3K/Akt signaling in HCC progression. Activation of PI3K/Akt signaling promotes glucose uptake, favors glycolysis and increases tumor cell proliferation. It inhibits both apoptosis and autophagy while promoting HCC cell survival. PI3K/Akt stimulates epithelial-to-mesenchymal transition (EMT) and increases matrix-metalloproteinase (MMP) expression during HCC metastasis. In addition to increasing colony formation capacity and facilitating the spread of tumor cells, PI3K/Akt signaling stimulates angiogenesis. Therefore, silencing PI3K/Akt signaling prevents aggressive HCC cell behavior. Activation of PI3K/Akt signaling can confer drug resistance, particularly to sorafenib, and decreases the radio-sensitivity of HCC cells. Anti-cancer agents, like phytochemicals and small molecules can suppress PI3K/Akt signaling by limiting HCC progression. Being upregulated in tumor tissues and clinical samples, PI3K/Akt can also be used as a biomarker to predict patients' response to therapy.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Hepáticas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Movimento Celular , Regulação Neoplásica da Expressão GênicaRESUMO
BACKGROUND: Mitochondrial defects are thought to play a role in cancer initiation and progression for a long time. Because of the absence of protective histones and an inefficiency in the DNA repair process, mitochondrial DNA is known to be prone to mutations. The deletion of 4977bp is one of the most common mutations in human cancers. This study aimed to investigate the relationship between 4977bp common deletion and Esophageal Squamous Cell Carcinoma Disease (SCC) to provide prognostic information. METHODS: By using a PCR protocol, this study identified the 4977bp deletion of mtDNA. A PCR method was used on tumor samples from 41 squamous cell carcinoma patients and blood samples from 50 healthy individuals to detect DNA. RESULTS: Among the 41 tumor samples (80.5%), 33 were found to have the 4977bp deletion, while none of the blood samples from healthy individuals contained it. CONCLUSIONS: It is shown that the deletion of 4977bp of mtDNA correlates significantly with SCC in this study. A 4977bp deletion could be used as an effective cancer screening indicator and biomarker for early diagnosis and prevention of cancer.
Assuntos
Carcinoma de Células Escamosas , DNA Mitocondrial , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , DNA Mitocondrial/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Masculino , Feminino , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Pessoa de Meia-Idade , Deleção de Sequência , Idoso , PrognósticoRESUMO
Hepatitis B virus (HBV), a vaccine-avoidable infection, is a health concern worldwide, leading to liver disorders such as acute self-constraint and chronic hepatitis, liver failure, hepatic cirrhosis, and even hepatocellular carcinoma if untreated. 'Immunogeneticprofiling', genetic variations of the pro- and anti-inflammatory cytokines responsible for regulating the immune responses, cause person-to-person differences and impact the clinical manifestation of the disease. The current experimental-bioinformatics research was conducted to examine whether promoteric IL-18-rs187238 C > G and -rs1946518 T > G and intronic CD14-rs2569190 A > G variations are associated with chronic HBV. A total of 400 individuals (200 in each case and control group) participated in the study and were genotyped using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. The data was also assessed bioinformatics-wise for conservation, genomic transcription and splicing, and protein interactions. Findings proposed that unlike the IL-18-rs1946518 T > G and CD14-rs2569190 A > G, the IL-18-rs187238 C > G is a protector against chronic HBV (odds ratio [OR] = 0.62, 95% confidence intervals [CI]: 0.46-0.83, and p = 0.002). The TG/CC/AA, TG/CC/AG, TT/CC/AG, and GG/CC/AA combined genotypes significantly increased chronic HBV risk (p < 0.05), while the IL-18 G/T and G/G haplotypes lessened it (p < 0.05). Moreover, IL-18-rs1946518 T > G is in the protected genomic regions across mammalian species. In contrast to the IL-18-rs1946518 T > G, IL-18-rs187238 C > G is likely to create novel binding sites for transcription factors, and the CD14-rs2569190 A > G presumably changed the ribonucleic acid splicing pattern. More research on larger populations and other ethnicities is required to authenticate these results.
RESUMO
Changes in lifestyle such as physical activity and eating habits have been one of the main reasons for development of various diseases in modern world, especially cancer. However, role of genetic factors in initiation of cancer cannot be ignored and Wnt/ß-catenin signaling is such factor that can affect tumor progression. Breast tumor is the most malignant tumor in females and it causes high mortality and morbidity around the world. The survival and prognosis of patients are not still desirable, although there have been advances in introducing new kinds of therapies and diagnosis. The present review provides an update of Wnt/ß-catenin function in breast cancer malignancy. The upregulation of Wnt is commonly observed during progression of breast tumor and confirms that tumor cells are dependent on this pathway Wnt/ß-catenin induction prevents apoptosis that is of importance for mediating drug resistance. Furthermore, Wnt/ß-catenin signaling induces DNA damage repair in ameliorating radio-resistance. Wnt/ß-catenin enhances proliferation and metastasis of breast tumor. Wnt/ß-catenin induces EMT and elevates MMP expression. Furthermore, Wnt/ß-catenin participates in tumor microenvironment remodeling and due to its tumor-promoting factor, drugs for its suppression have been developed. Different kinds of upstream mediators Wnt/ß-catenin signaling in breast cancer have been recognized that their targeting is a therapeutic approach. Finally, Wnt/ß-catenin can be considered as a biomarker in clinical trials.
Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/patologia , beta Catenina/genética , beta Catenina/metabolismo , Via de Sinalização Wnt , Ativação Transcricional , Regulação para Cima , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Microambiente TumoralRESUMO
BACKGROUND: Glutathione S-transferases (GSTs) polymorphisms may impact on chronic myeloid leukemia (CML) risk or heterogeneous responses to Imatinib mesylate (IM). The aim of this study was to evaluate the correlation between GSTs polymorphisms and CML risk, treatment response. METHODS: We genotyped GSTM1, GSTT1 null deletion polymorphisms, and GSTP1 Ile105Val polymorphism by PCR methods and BCR-ABL transcripts were analyzed by qRT-PCR in 104 CML patients and 104 sex- and age-matched healthy individuals. RESULTS: Individual analysis showed significant association of GSTM1 (p = 0.008; OR = 0.46; 95% CI: 0.26-0.82) and GSTP1 genes (p = 0.04; OR = 1.56; 95% CI: 1.016-2.423) with CML risk. The combined analysis indicated that GSTM1 null/GSTT1 present, GSTM1-null/GSTP1M*(AG/GG) as well as GSTT1 present/ GSTP1M* genotype were associated with CML risk (ORg(-):2.28; 95% CI: 1.29-4.04; ORgg: 2.85; 95% CI: 1.36-5.97; OR(-)g: 1.75; 95% CI: 0.99-3.06, respectively). The proportion of CML cancer attributable to the interaction of smoking and GSTM1 null, GSTT1null, and GSTP1 M* was 42%, 39%, and 13%, respectively. Patients with GSTM1-null and GSTP1 AG/GG genotype had significantly a lower rate of MMR achievement (p = 0.00; p = 0.009 respectively). Event-free survival (EFS) percentage was similar between GSTM1 null and GSTM1 present patients (p = 0.21). CONCLUSION: Our study suggests the influence of GSTM1 and GSTP1 polymorphisms on CML risk and treatment response. The interaction between GSTs polymorphisms and smoking plays a significant role on CML susceptibility.