Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37297216

RESUMO

In this study, a new eco-friendly kaolinite-cellulose (Kaol/Cel) composite was prepared from waste red bean peels (Phaseolus vulgaris) as a source of cellulose to serve as a promising and effective adsorbent for the removal of crystal violet (CV) dye from aqueous solutions. Its characteristics were investigated through the use of X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and zero-point of charge (pHpzc). The Box-Behnken design was used to improve CV adsorption on the composite by testing its primary affecting factors: loading Cel into the composite matrix of Kaol (A: 0-50%), adsorbent dosage (B: 0.02-0.05 g), pH (C: 4-10), temperature (D: 30-60 °C), and duration (E: 5-60 min). The significant interactions with the greatest CV elimination efficiency (99.86%) are as follows: BC (adsorbent dose vs. pH) and BD (adsorbent dose vs. temperature) at optimum parameters (A: 25%, B: 0.05 g, C: 10, D: 45 °C, and E: 17.5 min) for which the CV's best adsorption capacity (294.12 mg/g) was recorded. The Freundlich and pseudo-second-order kinetic models were the best isotherm and kinetic models fitting our results. Furthermore, the study investigated the mechanisms responsible for eliminating CV by utilizing Kaol/Cel-25. It detected multiple types of associations, including electrostatic, n-π, dipole-dipole, hydrogen bonding interactions, and Yoshida hydrogen bonding. These findings suggest that Kaol/Cel could be a promising starting material for developing a highly efficient adsorbent that can remove cationic dyes from aqueous environments.

2.
Comb Chem High Throughput Screen ; 25(6): 945-972, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33687892

RESUMO

BACKGROUND: The efficiency of herbal medicinal products depends on the quantity of active ingredients in them, which can vary considerably in different contents. Hence, the quality control of herbal medicines is a critical concern. OBJECTIVE: This paper aims to provide a succinct review of recent chemometrics applications in solving the uncertainty of the authentication of herbal medicines over the last two decades. METHODS: Studies involving chemometrics applications in conjunction with various analytical methods have been categorized according to the type of research used in the quality evaluation of different samples, including chromatographic (HPLC, GC-MS) and spectroscopic analysis (UVVis, FTIR, NMR, and MS). RESULTS: This review consists of over 90 studies illustrating the relevance of chemometrics methods in the discrimination based on the key bioactive components and phytochemical diversity of several herbs from closely related species. In addition to the prediction of the active components, the distinction between varieties and hybrids was accomplished through quantitative analysis techniques. CONCLUSION: Methods of chemometrics have provided an important and potent tool for the quality control and authentication of various herbs.


Assuntos
Produtos Biológicos , Plantas Medicinais , Quimiometria , Medicina Herbária , Fitoterapia/métodos , Plantas Medicinais/química
3.
ACS Omega ; 6(7): 4878-4887, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33644595

RESUMO

Bee pollen collected by honeybees (Apis mellifera) is one of the bee products, and it is as valuable as honey, propolis, royal jelly, or beebread. Its quality varies according to its geographic location or plant sources. This study aimed to apply rapid, simple, and accurate analytical methods such as attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and high-performance liquid chromatography (HPLC) along with chemometrics analysis to construct a model aimed at discriminating between different pollen samples. In total, 33 samples were collected and analyzed using principal component analysis (PCA), hierarchical clustering analysis (HCA), and partial least squares regression (PLS) to assess the differences and similarities between them. The PCA score plot based on both HPLC and ATR-FTIR revealed the same discriminatory pattern, and the samples were divided into four major classes depending on their total content of polyphenols. The results revealed that spectral data obtained from ATR-FTIR acquired in the region (4000-500 cm-1) were further subjected to a standard normal variable (SNV) method that removes scattering effects from spectra. However, PCA, HCA, and PLS showed that the best PLS model was obtained with a regression coefficient (R 2) of 0.9001, root-mean-square estimation error (RMSEE) of 0.0304, and root-mean-squared error cross-validation (RMSEcv) of 0.036. Discrimination between the three species has also been possible by combining the pre-processed ATR-FTIR spectra with PCA and PLS. Additionally, the HPLC chromatograms after pre-treatment (SNV) were subjected to unsupervised analysis (PCA-HCA) and supervised analysis (PLS). The PLS model confers good results by factors (R 2 = 0.98, RMSEE = 8.22, and RMSEcv = 27.86). Prospects for devising bee pollen quality assessment methods include utilizing ATR-FTIR and HPLC in combination with multivariate methods for rapid authentication of the geographic location or plant sources of bee pollen.

4.
Membranes (Basel) ; 11(2)2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33672853

RESUMO

In this work, the synthesis of a series of the functionalized inorganic/organic composite anion exchange membranes (AEMs) was carried out by employing the varying amount of inorganic filler consist of N-(trimethoxysilylpropyl)-N,N,N-trimethylammonium chloride (TMSP-TMA+Cl-) into the quaternized poly (2, 6-dimethyl-1, 4-phenylene oxide) (QPPO) matrix for acid recovery via diffusion dialysis (DD) process. Fourier transform infrared (FTIR) spectroscopy clearly demonstrated the fabrication of the functionalized inorganic/organic composite AEMs and the subsequent membrane characteristic measurements such as ion exchange capacity (IEC), linear swelling ratio (LSR), and water uptake (WR) gave us the optimum loading condition of the filler without undesirable filler particle aggregation. These composite AEMs exhibited IEC of 2.18 to 2.29 meq/g, LSR of 13.33 to 18.52%, and WR of 46.11 to 81.66% with sufficient thermal, chemical, and mechanical stability. The diffusion dialysis (DD) test for acid recovery from artificial acid wastewater of HCl/FeCl2 showed high acid DD coefficient (UH+) (0.022 to 0.025 m/h) and high separation factor (S) (139-260) compared with the commercial membrane. Furthermore, the developed AEMs was acceptably stable (weight loss < 20%) in the acid wastewater at 60 °C as an accelerated severe condition for 2 weeks. These results clearly indicated that the developed AEMs have sufficient potential for acid recovery application by DD process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA