Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Semin Cancer Biol ; 99: 24-44, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309540

RESUMO

Autophagy, a self-degradative process vital for cellular homeostasis, plays a significant role in adipose tissue metabolism and tumorigenesis. This review aims to elucidate the complex interplay between autophagy, obesity, and cancer development, with a specific emphasis on how obesity-driven changes affect the regulation of autophagy and subsequent implications for cancer risk. The burgeoning epidemic of obesity underscores the relevance of this research, particularly given the established links between obesity, autophagy, and various cancers. Our exploration delves into hormonal influence, notably INS (insulin) and LEP (leptin), on obesity and autophagy interactions. Further, we draw attention to the latest findings on molecular factors linking obesity to cancer, including hormonal changes, altered metabolism, and secretory autophagy. We posit that targeting autophagy modulation may offer a potent therapeutic approach for obesity-associated cancer, pointing to promising advancements in nanocarrier-based targeted therapies for autophagy modulation. However, we also recognize the challenges inherent to these approaches, particularly concerning their precision, control, and the dual roles autophagy can play in cancer. Future research directions include identifying novel biomarkers, refining targeted therapies, and harmonizing these approaches with precision medicine principles, thereby contributing to a more personalized, effective treatment paradigm for obesity-mediated cancer.


Assuntos
Neoplasias , Obesidade , Humanos , Obesidade/complicações , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Resultado do Tratamento , Autofagia/fisiologia , Neoplasias/etiologia , Neoplasias/metabolismo
2.
Biochem Cell Biol ; 102(2): 127-134, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37988705

RESUMO

Glioblastoma (GBM) is the most common aggressive central nervous system cancer. GBM has a high mortality rate, with a median survival time of 12-15 months after diagnosis. A poor prognosis and a shorter life expectancy may result from resistance to standard treatments such as radiation and chemotherapy. Temozolomide has been the mainstay treatment for GBM, but unfortunately, there are high rates of resistance with GBM bypassing apoptosis. A proposed mechanism for bypassing apoptosis is decreased ceramide levels, and previous research has shown that within GBM cells, B cell lymphoma 2-like 13 (BCL2L13) can inhibit ceramide synthase. This review aims to discuss the causes of resistance in GBM cells, followed by a brief description of BCL2L13 and an explanation of its mechanism of action. Further, lipids, specifically ceramide, will be discussed concerning cancer and GBM cells, focusing on ceramide synthase and its role in developing GBM. By gathering all current information on BCL2L13 and ceramide synthase, this review seeks to enable an understanding of these pieces of GBM in the hope of finding an effective treatment for this disease.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Linhagem Celular Tumoral , Temozolomida/farmacologia , Apoptose , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Ceramidas/uso terapêutico , Resistencia a Medicamentos Antineoplásicos
3.
Expert Rev Proteomics ; 21(4): 125-147, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38563427

RESUMO

INTRODUCTION: Gene identification for genetic diseases is critical for the development of new diagnostic approaches and personalized treatment options. Prioritization of gene translation is an important consideration in the molecular biology field, allowing researchers to focus on the most promising candidates for further investigation. AREAS COVERED: In this paper, we discussed different approaches to prioritize genes for translation, including the use of computational tools and machine learning algorithms, as well as experimental techniques such as knockdown and overexpression studies. We also explored the potential biases and limitations of these approaches and proposed strategies to improve the accuracy and reliability of gene prioritization methods. Although numerous computational methods have been developed for this purpose, there is a need for computational methods that incorporate tissue-specific information to enable more accurate prioritization of candidate genes. Such methods should provide tissue-specific predictions, insights into underlying disease mechanisms, and more accurate prioritization of genes. EXPERT OPINION: Using advanced computational tools and machine learning algorithms to prioritize genes, we can identify potential targets for therapeutic intervention of complex diseases. This represents an up-and-coming method for drug development and personalized medicine.


Assuntos
Biologia Computacional , Aprendizado de Máquina , Humanos , Algoritmos , Biologia Computacional/métodos , Medicina de Precisão/métodos , Biossíntese de Proteínas/genética
4.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474036

RESUMO

Alveolar rhabdomyosarcoma (ARMS), an invasive subtype of rhabdomyosarcoma (RMS), is associated with chromosomal translocation events resulting in one of two oncogenic fusion genes, PAX3-FOXO1 or PAX7-FOXO1. ARMS patients exhibit an overexpression of the pleiotropic cytokine transforming growth factor beta (TGF-ß). This overexpression of TGF-ß1 causes an increased expression of a downstream transcription factor called SNAIL, which promotes epithelial to mesenchymal transition (EMT). Overexpression of TGF-ß also inhibits myogenic differentiation, making ARMS patients highly resistant to chemotherapy. In this review, we first describe different types of RMS and then focus on ARMS and the impact of TGF-ß in this tumor type. We next highlight current chemotherapy strategies, including a combination of the FDA-approved drugs vincristine, actinomycin D, and cyclophosphamide (VAC); cabozantinib; bortezomib; vinorelbine; AZD 1775; and cisplatin. Lastly, we discuss chemotherapy agents that target the differentiation of tumor cells in ARMS, which include all-trans retinoic acid (ATRA) and 5-Azacytidine. Improving our understanding of the role of signaling pathways, such as TGF-ß1, in the development of ARMS tumor cells differentiation will help inform more tailored drug administration in the future.


Assuntos
Rabdomiossarcoma Alveolar , Rabdomiossarcoma , Humanos , Rabdomiossarcoma Alveolar/genética , Rabdomiossarcoma Alveolar/metabolismo , Rabdomiossarcoma Alveolar/patologia , Fator de Crescimento Transformador beta , Fator de Crescimento Transformador beta1 , Fatores de Transcrição Box Pareados/genética , Transição Epitelial-Mesenquimal , Rabdomiossarcoma/genética , Proteínas de Fusão Oncogênica/genética
5.
Biochem Cell Biol ; 101(6): 496-500, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37207361

RESUMO

For the past 6 months, there has been an ongoing revolution in Iran after the brutal death of Zhina (Mahsa) Amini in morality police custody. Iranian universities' professors and students have been on the frontline of this revolution and have been fired or sentenced. On the other hand, Iranian high schools and primary schools have been under suspected toxic gas attack. In the current article, the latest status of oppression of the university students and professors and toxic gas attack on primary and high schools in Iran has been evaluated.


Assuntos
Instituições Acadêmicas , Feminino , Humanos , Irã (Geográfico) , Universidades
6.
Biochem Cell Biol ; 101(5): 385-387, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37246783

RESUMO

Professor Mohammad Hashemi was a clinical biochemist and cancer genetic scientist. He has been chair and head of Department of Clinical Biochemistry at Zahedan University of Medical Sciences, Zahedan, Iran. He has played an important role in the improvement of understanding of genetics of disease in southeast Iran. He was also a part of international team for the discovery of the role of calprotectin (S100A8/A9) in cancer biology via regulation of cell fate in tumor cells. He had over 300 peer-reviewed scientific publications and trained significant numbers of high quality personals (>40) in the field of biomedical sciences. His sudden death in 2019 shocked national and international scientific society but his scientific legacy will remain alive forever.


Assuntos
Biologia Molecular , Neoplasias , Humanos , Irã (Geográfico) , Diferenciação Celular
7.
Cell Biol Int ; 47(5): 969-980, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36655489

RESUMO

The activation of hepatic stellate cells is the primary function of facilitating liver fibrosis. Interfering with the coordinators of different signaling pathways in activated hepatic stellate cells (aHSCs) could be a potential approach in ameliorating liver fibrosis. Regarding the illustrated anti-fibrotic effect of imatinib in liver fibrosis, we investigated the imatinib's potential role in inhibiting HSC activation through miR-124 and its interference with the STAT3/hepatic leukemia factor (HLF)/IL-6 circuit. The anti-fibrotic effect of imatinib was investigated in the LX-2 cell line and carbon tetrachloride (CCl4 )-induced Sprague-Dawley rat. The expression of IL-6, STAT3, HLF, miR-124, and α-smooth muscle actin (α-SMA) were quantified by quantitative real-time PCR (qRT-PCR) and the protein level of α-SMA and STAT3 was measured by western blot analysis both in vitro and in vivo. The LX-2 cells were subjected to immunocytochemistry (ICC) for α-SMA expression. After administering imatinib in the liver fibrosis model, histopathological examinations were done, and hepatic function serum markers were checked. Imatinib administration alleviated mentioned liver fibrosis markers. The expression of miR-124 was downregulated, while IL-6/HLF/STAT3 circuit agents were upregulated in vitro and in vivo. Notably, imatinib intervention decreased the expression of IL-6, STAT3, and HLF. Elevated expression of miR-124 suppressed the expression of STAT3 and further inhibited HSCs activation. Our results demonstrated that imatinib not only ameliorated hepatic fibrosis through tyrosine kinase inhibitor (TKI) activity but also interfered with the miR-124 and STAT3/HLF/IL-6 pathway. Considering the important role of miR-124 in regulating liver fibrosis and HSCs activation, imatinib may exert its anti-fibrotic activity through miR-124.


Assuntos
Interleucina-6 , MicroRNAs , Ratos , Animais , Mesilato de Imatinib/farmacologia , Interleucina-6/metabolismo , Células Estreladas do Fígado/metabolismo , Ratos Sprague-Dawley , MicroRNAs/metabolismo , Cirrose Hepática/patologia , Tetracloreto de Carbono
8.
J Immunol ; 206(5): 1013-1026, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33462138

RESUMO

There is currently no effective vaccine against leishmaniasis because of the lack of sufficient knowledge about the Ags that stimulate host-protective and long-lasting T cell-mediated immunity. We previously identified Leishmania phosphoenolpyruvate carboxykinase (PEPCK, a gluconeogenic enzyme) as an immunodominant Ag that is expressed by both the insect (promastigote) and mammalian (amastigote) stages of the parasite. In this study, we investigated the role of PEPCK in metabolism, virulence, and immunopathogenicity of Leishmania major We show that targeted loss of PEPCK results in impaired proliferation of L. major in axenic culture and bone marrow-derived macrophages. Furthermore, the deficiency of PEPCK results in highly attenuated pathology in vivo. BALB/c mice infected with PEPCK-deficient parasites failed to develop any cutaneous lesions despite harboring parasites at the cutaneous site of infection. This was associated with a dramatic reduction in the frequency of cytokine (IFN-γ, IL-4, and IL-10)-producing CD4+ T cells in spleens and lymph nodes draining the infection site. Cells from mice infected with PEPCK-deficient parasites also produced significantly low levels of these cytokines into the culture supernatant following in vitro restimulation with soluble Leishmania Ag. PEPCK-deficient parasites exhibited significantly greater extracellular acidification rate, increased proton leak, and decreased ATP-coupling efficiency and oxygen consumption rates in comparison with their wild-type and addback counterparts. Taken together, these results show that PEPCK is a critical metabolic enzyme for Leishmania, and its deletion results in altered metabolic activity and attenuation of virulence.


Assuntos
Leishmania major/metabolismo , Leishmania major/patogenicidade , Leishmaniose Cutânea/parasitologia , Fosfoenolpiruvato/metabolismo , Fatores de Virulência/metabolismo , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/parasitologia , Citocinas/imunologia , Feminino , Imunidade Celular/imunologia , Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos SCID , Camundongos Transgênicos , Fosfoenolpiruvato/imunologia , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Fatores de Virulência/imunologia
9.
Toxicol Appl Pharmacol ; 453: 116210, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36028075

RESUMO

Doxorubicin (DOX) is an effective anthracycline used in chemotherapeutic regimens for a variety of haematological and solid tumors. However, its utility remains limited by its well-described, but poorly understood cardiotoxicity. Despite numerous studies describing various forms of regulated cell death and their involvement in DOX-mediated cardiotoxicity, the predominate form of cell death remains unclear. Part of this inconsistency lies in a lack of standardization of in vivo and in vitro model design. To this end, the objective of this study was to characterize acute low- and high-dose DOX exposure on cardiac structure and function in C57BL/6 N mice, and evaluate regulated cell death pathways and autophagy both in vivo and in cardiomyocyte culture models. Acute low-dose DOX had no significant impact on cardiac structure or function; however, acute high-dose DOX elicited substantial cardiac necrosis resulting in diminished cardiac mass and volume, with a corresponding reduced cardiac output, and without impacting ejection fraction or fibrosis. Low-dose DOX consistently activated caspase-signaling with evidence of mitochondrial permeability transition. However, acute high-dose DOX had only modest impact on common necrotic signaling pathways, but instead led to an inhibition in autophagic flux. Intriguingly, when autophagy was inhibited in cultured cardiomyoblasts, DOX-induced necrosis was enhanced. Collectively, these observations implicate inhibition of autophagy flux as an important component of the acute necrotic response to DOX, but also suggest that acute high-dose DOX exposure does not recapitulate the disease phenotype observed in human cardiotoxicity.


Assuntos
Cardiotoxicidade , Doxorrubicina , Animais , Antibióticos Antineoplásicos/toxicidade , Apoptose , Autofagia , Cardiotoxicidade/metabolismo , Morte Celular , Doxorrubicina/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , Necrose
10.
Drug Resist Updat ; 59: 100794, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34991982

RESUMO

The COVID-19 pandemic is one of the greatest threats to human health in the 21st century with more than 257 million cases and over 5.17 million deaths reported worldwide (as of November 23, 2021. Various agents were initially proclaimed to be effective against SARS-CoV-2, the etiological agent of COVID-19. Hydroxychloroquine, lopinavir/ritonavir, and ribavirin are all examples of therapeutic agents, whose efficacy against COVID-19 was later disproved. Meanwhile, concentrated efforts of researchers and clinicians worldwide have led to the identification of novel therapeutic options to control the disease including PAXLOVID™ (PF-07321332). Although COVID-19 cases are currently treated using a comprehensive approach of anticoagulants, oxygen, and antibiotics, the novel Pfizer agent PAXLOVID™ (PF-07321332), an investigational COVID-19 oral antiviral candidate, significantly reduced hospitalization time and death rates, based on an interim analysis of the phase 2/3 EPIC-HR (Evaluation of Protease Inhibition for COVID-19 in High-Risk Patients) randomized, double-blind study of non-hospitalized adult patients with COVID-19, who are at high risk of progressing to severe illness. The scheduled interim analysis demonstrated an 89 % reduction in risk of COVID-19-related hospitalization or death from any cause compared to placebo in patients treated within three days of symptom onset (primary endpoint). However, there still exists a great need for the development of additional treatments, as the recommended therapeutic options are insufficient in many cases. Thus far, mRNA and vector vaccines appear to be the most effective modalities to control the pandemic. In the current review, we provide an update on the progress that has been made since April 2020 in clinical trials concerning the effectiveness of therapies available to combat COVID-19. We focus on currently recommended therapeutic agents, including steroids, various monoclonal antibodies, remdesivir, baricitinib, anticoagulants and PAXLOVID™ summarizing the latest original studies and meta-analyses. Moreover, we aim to discuss other currently and previously studied agents targeting COVID-19 that either show no or only limited therapeutic activity. The results of recent studies report that hydroxychloroquine and convalescent plasma demonstrate no efficacy against SARS-CoV-2 infection. Lastly, we summarize the studies on various drugs with incoherent or insufficient data concerning their effectiveness, such as amantadine, ivermectin, or niclosamide.


Assuntos
COVID-19 , Preparações Farmacêuticas , Adulto , Antivirais/uso terapêutico , COVID-19/terapia , Humanos , Imunização Passiva , Lactamas , Leucina , Nitrilas , Pandemias , Prolina , Ensaios Clínicos Controlados Aleatórios como Assunto , SARS-CoV-2 , Resultado do Tratamento , Soroterapia para COVID-19
11.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163279

RESUMO

Glioblastoma (GBM) is a devastating type of brain tumor, and current therapeutic treatments, including surgery, chemotherapy, and radiation, are palliative at best. The design of effective and targeted chemotherapeutic strategies for the treatment of GBM require a thorough analysis of specific signaling pathways to identify those serving as drivers of GBM progression and invasion. The Wnt/ß-catenin and PI3K/Akt/mTOR (PAM) signaling pathways are key regulators of important biological functions that include cell proliferation, epithelial-mesenchymal transition (EMT), metabolism, and angiogenesis. Targeting specific regulatory components of the Wnt/ß-catenin and PAM pathways has the potential to disrupt critical brain tumor cell functions to achieve critical advancements in alternative GBM treatment strategies to enhance the survival rate of GBM patients. In this review, we emphasize the importance of the Wnt/ß-catenin and PAM pathways for GBM invasion into brain tissue and explore their potential as therapeutic targets.


Assuntos
Glioblastoma/metabolismo , Transdução de Sinais/fisiologia , Apoptose/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/fisiologia , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/fisiopatologia , Humanos , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo
12.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36076921

RESUMO

Biofilms are complex structures formed by bacteria, fungi, or even viruses on biotic and abiotic surfaces, and they can be found in almost any part of the human body. The prevalence of biofilm-associated diseases has increased in recent years, mainly because of the frequent use of indwelling medical devices that create opportunities for clinically important bacteria and fungi to form biofilms either on the device or on the neighboring tissues. As a result of their resistance to antibiotics and host immunity factors, biofilms have been associated with the development or persistence of several clinically important diseases. The inability to completely eradicate biofilms drastically increases the burden of disease on both the patient and the healthcare system. Therefore, it is crucial to develop innovative ways to tackle the growth and development of biofilms. This review focuses on dental- and implant-associated biofilm infections, their prevalence in humans, and potential therapeutic intervention strategies, including the recent advances in pharmacology and biomedical engineering. It lists current strategies used to control the formation of clinically important biofilms, including novel antibiotics and their carriers, antiseptics and disinfectants, small molecule anti-biofilm agents, surface treatment strategies, and nanostructure functionalization, as well as multifunctional coatings particularly suitable for providing antibacterial effects to the surface of implants, to treat either dental- or implant-related bacterial infections.


Assuntos
Anti-Infecciosos Locais , Infecções Bacterianas , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/prevenção & controle , Biofilmes , Fungos , Humanos
13.
Int J Mol Sci ; 23(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36555829

RESUMO

Biomaterials for tissue scaffolds are key components in modern tissue engineering and regenerative medicine. Targeted reconstructive therapies require a proper choice of biomaterial and an adequate choice of cells to be seeded on it. The introduction of stem cells, and the transdifferentiation procedures, into regenerative medicine opened a new era and created new challenges for modern biomaterials. They must not only fulfill the mechanical functions of a scaffold for implanted cells and represent the expected mechanical strength of the artificial tissue, but furthermore, they should also assure their survival and, if possible, affect their desired way of differentiation. This paper aims to review how modern biomaterials, including synthetic (i.e., polylactic acid, polyurethane, polyvinyl alcohol, polyethylene terephthalate, ceramics) and natural (i.e., silk fibroin, decellularized scaffolds), both non-biodegradable and biodegradable, could influence (tissue) stem cells fate, regulate and direct their differentiation into desired target somatic cells.


Assuntos
Materiais Biocompatíveis , Alicerces Teciduais , Materiais Biocompatíveis/farmacologia , Engenharia Tecidual/métodos , Medicina Regenerativa , Diferenciação Celular
14.
Am J Respir Cell Mol Biol ; 64(1): 29-38, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32915643

RESUMO

Lung cells are constantly exposed to various internal and external stressors that disrupt protein homeostasis. To cope with these stimuli, cells evoke a highly conserved adaptive mechanism called the unfolded protein response (UPR). UPR stressors can impose greater protein secretory demands on the endoplasmic reticulum (ER), resulting in the development, differentiation, and survival of these cell types to meet these increasing functional needs. Dysregulation of the UPR leads to the development of the disease. The UPR and ER stress are involved in several human conditions, such as chronic inflammation, neurodegeneration, metabolic syndrome, and cancer. Furthermore, potent and specific compounds that target the UPR pathway are under development as future therapies. The focus of this review is to thoroughly describe the effects of both internal and external stressors on the ER in asthma. Furthermore, we discuss how the UPR signaling pathway is activated in the lungs to overcome cellular damage. We also present an overview of the pathogenic mechanisms, with a brief focus on potential strategies for pharmacological interventions.


Assuntos
Asma/patologia , Neoplasias/patologia , Resposta a Proteínas não Dobradas/fisiologia , Animais , Retículo Endoplasmático/patologia , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Transdução de Sinais/fisiologia
15.
Crit Rev Clin Lab Sci ; 58(6): 385-398, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33595397

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has highlighted the cardinal importance of rapid and accurate diagnostic assays. Since the early days of the outbreak, researchers with different scientific backgrounds across the globe have tried to fulfill the urgent need for such assays, with many assays having been approved and with others still undergoing clinical validation. Molecular diagnostic assays are a major group of tests used to diagnose COVID-19. Currently, the detection of SARS-CoV-2 RNA by reverse transcription polymerase chain reaction (RT-PCR) is the most widely used method. Other diagnostic molecular methods, including CRISPR-based assays, isothermal nucleic acid amplification methods, digital PCR, microarray assays, and next generation sequencing (NGS), are promising alternatives. In this review, we summarize the technical and clinical applications of the different COVID-19 molecular diagnostic assays and suggest directions for the implementation of such technologies in future infectious disease outbreaks.


Assuntos
COVID-19/diagnóstico , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , SARS-CoV-2/isolamento & purificação , Teste para COVID-19/métodos , Humanos
16.
Can J Physiol Pharmacol ; 99(3): 284-293, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33635146

RESUMO

The Wnt/ß-catenin pathway, which interferes with cell proliferation, differentiation, and autophagy, is commonly dysregulated in colorectal cancer (CRC). Mutation of the RAS oncogene is the most prevalent genetic alteration in CRC and has been linked to activation of protein kinase B (AKT) signaling. Phosphorylation of ß-catenin at Ser 552 by AKT contributes to ß-catenin stability, transcriptional activity, and increase of cell proliferation. Casein kinase 1 alpha (CK1α) is an enzyme that simultaneously regulates Wnt/ß-catenin and AKT. The link of the AKT and Wnt pathway to autophagy in RAS-mutated CRC cells has not well identified. Therefore, we investigated how pharmacological CK1α inhibition (D4476) is involved in regulation of autophagy, Wnt/ß-catenin, and AKT pathways in RAS-mutated CRC cell lines. qRT-PCR and immunoblotting experiments revealed that phospho-AKT (S473) and phospho-ß-catenin (S552) are constitutively increased in RAS-mutated CRC cell lines, in parallel with augmented CK1α expression. The results also showed that D4476 significantly reduced the AKT/phospho-ß-catenin (S552) axis concomitantly with autophagy flux inhibition in RAS-mutated CRC cells. Furthermore, D4476 significantly induced apoptosis in RAS-mutated CRC cells. In conclusion, our results indicate that CK1α inhibition reduces autophagy flux and promotes apoptosis by interfering with the AKT/phospho-ß-catenin (S552) axis in RAS-mutated CRC cells.


Assuntos
Autofagia/efeitos dos fármacos , Neoplasias Colorretais/genética , Genes ras/genética , Proteína Oncogênica v-akt/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , beta Catenina/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Células HCT116 , Humanos , Mutação , Fosforilação , beta Catenina/antagonistas & inibidores
17.
Drug Resist Updat ; 53: 100719, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32717568

RESUMO

In December 2019, a novel SARS-CoV-2 coronavirus emerged, causing an outbreak of life-threatening pneumonia in the Hubei province, China, and has now spread worldwide, causing a pandemic. The urgent need to control the disease, combined with the lack of specific and effective treatment modalities, call for the use of FDA-approved agents that have shown efficacy against similar pathogens. Chloroquine, remdesivir, lopinavir/ritonavir or ribavirin have all been successful in inhibiting SARS-CoV-2 in vitro. The initial results of a number of clinical trials involving various protocols of administration of chloroquine or hydroxychloroquine mostly point towards their beneficial effect. However, they may not be effective in cases with persistently high viremia, while results on ivermectin (another antiparasitic agent) are not yet available. Interestingly, azithromycin, a macrolide antibiotic in combination with hydroxychloroquine, might yield clinical benefit as an adjunctive. The results of clinical trials point to the potential clinical efficacy of antivirals, especially remdesivir (GS-5734), lopinavir/ritonavir, and favipiravir. Other therapeutic options that are being explored involve meplazumab, tocilizumab, and interferon type 1. We discuss a number of other drugs that are currently in clinical trials, whose results are not yet available, and in various instances we enrich such efficacy analysis by invoking historic data on the treatment of SARS, MERS, influenza, or in vitro studies. Meanwhile, scientists worldwide are seeking to discover novel drugs that take advantage of the molecular structure of the virus, its intracellular life cycle that probably elucidates unfolded-protein response, as well as its mechanism of surface binding and cell invasion, like angiotensin converting enzymes-, HR1, and metalloproteinase inhibitors.


Assuntos
Antivirais/administração & dosagem , Tratamento Farmacológico da COVID-19 , Aprovação de Drogas/métodos , SARS-CoV-2/efeitos dos fármacos , Animais , Antibacterianos/administração & dosagem , Antibacterianos/metabolismo , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/metabolismo , Antimaláricos/administração & dosagem , Antimaláricos/metabolismo , Antivirais/metabolismo , COVID-19/metabolismo , Ensaios Clínicos como Assunto/métodos , Inibidores do Citocromo P-450 CYP3A/administração & dosagem , Inibidores do Citocromo P-450 CYP3A/metabolismo , Quimioterapia Combinada , Humanos , Hidroxicloroquina/administração & dosagem , Hidroxicloroquina/metabolismo , SARS-CoV-2/metabolismo , Estados Unidos/epidemiologia
18.
Adv Exp Med Biol ; 1318: 91-107, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33973174

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes novel coronavirus disease (COVID-19), is the seventh pathogenic coronavirus recently discovered in December 2019 in Wuhan, China. To date, our knowledge about its effect on the human host remains limited. It is well known that host genetic factors account for the individual differences in the susceptibility to infectious diseases. The genetic susceptibility factors to COVID-19 and its severity are associated with several unanswered questions. However, the experience gained from an earlier strain of coronavirus, SARS-CoV-1, which shows 78% genetic similarity to SARS-CoV-2 and uses the same receptor to bind to host cells, could provide some clues. It, therefore, seems possible to assemble new evidence in order to solve a potential genetic predisposition puzzle for COVID-19. In this chapter, the puzzle pieces, including virus entry receptors, immune response, and inflammation-related genes, as well as the probable genetic predisposition models to COVID-19, are discussed.


Assuntos
COVID-19 , Doenças Transmissíveis , China/epidemiologia , Predisposição Genética para Doença , Humanos , SARS-CoV-2
19.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34830443

RESUMO

The opportunistic pathogen Pseudomonas aeruginosa is a significant cause of infection in immunocompromised individuals, cystic fibrosis patients, and burn victims. To benefit its survival, the bacterium adapt to either a motile or sessile lifestyle when infecting the host. The motile bacterium has an often activated type III secretion system (T3SS), which is virulent to the host, whereas the sessile bacterium harbors an active T6SS and lives in biofilms. Regulatory pathways involving Gac-Rsm or secondary messengers such as c-di-GMP determine which lifestyle is favorable for P. aeruginosa. Here, we introduce the RNA binding protein RtcB as a modulator of the switch between motile and sessile bacterial lifestyles. Using the wild-type P. aeruginosa PAO1, and a retS mutant PAO1(∆retS) in which T3SS is repressed and T6SS active, we show that deleting rtcB led to simultaneous expression of T3SS and T6SS in both PAO1(∆rtcB) and PAO1(∆rtcB∆retS). The deletion of rtcB also increased biofilm formation in PAO1(∆rtcB) and restored the motility of PAO1(∆rtcB∆retS). RNA-sequencing data suggested RtcB as a global modulator affecting multiple virulence factors, including bacterial secretion systems. Competitive killing and infection assays showed that the three T6SS systems (H1, H2, and H3) in PAO1(∆rtcB) were activated into a functional syringe, and could compete with Escherichia coli and effectively infect lettuce. Western blotting and RT-PCR results showed that RtcB probably exerted its function through RsmA in PAO1(∆rtcB∆retS). Quantification of c-di-GMP showed an elevated intracellular levels in PAO1(∆rtcB), which likely drove the switch between T6SS and T3SS, and contributed to the altered phenotypes and characteristics observed. Our data demonstrate a pivotal role of RtcB in the virulence of P. aeruginosa by controlling multiple virulence determinants, such as biofilm formation, motility, pyocyanin production, T3SS, and T6SS secretion systems towards eukaryotic and prokaryotic cells. These findings suggest RtcB as a potential target for controlling P. aeruginosa colonization, establishment, and pathogenicity.


Assuntos
Aminoacil-tRNA Sintetases/genética , Pseudomonas aeruginosa/genética , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo VI/genética , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Humanos , Pseudomonas aeruginosa/patogenicidade , RNA Ligase (ATP)/genética , Fatores de Virulência/genética
20.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805142

RESUMO

Alzheimer's disease (AD) is a debilitating neurological disorder, and currently, there is no cure for it. Several pathologic alterations have been described in the brain of AD patients, but the ultimate causative mechanisms of AD are still elusive. The classic hallmarks of AD, including amyloid plaques (Aß) and tau tangles (tau), are the most studied features of AD. Unfortunately, all the efforts targeting these pathologies have failed to show the desired efficacy in AD patients so far. Neuroinflammation and impaired autophagy are two other main known pathologies in AD. It has been reported that these pathologies exist in AD brain long before the emergence of any clinical manifestation of AD. Microglia are the main inflammatory cells in the brain and are considered by many researchers as the next hope for finding a viable therapeutic target in AD. Interestingly, it appears that the autophagy and mitophagy are also changed in these cells in AD. Inside the cells, autophagy and inflammation interact in a bidirectional manner. In the current review, we briefly discussed an overview on autophagy and mitophagy in AD and then provided a comprehensive discussion on the role of these pathways in microglia and their involvement in AD pathogenesis.


Assuntos
Doença de Alzheimer/patologia , Autofagia , Microglia/metabolismo , Mitofagia , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/patologia , Proteínas do Sistema Complemento/metabolismo , Humanos , Inflamação , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Receptores Fc/metabolismo , Receptores Depuradores/metabolismo , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA