Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014161

RESUMO

Butyrophilin (BTN) molecules are emerging as key regulators of T cell immunity; however, how they trigger cell-mediated responses is poorly understood. Here, the crystal structure of a gamma-delta T cell antigen receptor (γδTCR) in complex with BTN2A1 revealed that BTN2A1 engages the side of the γδTCR, leaving the apical TCR surface bioavailable. We reveal that a second γδTCR ligand co-engages γδTCR via binding to this accessible apical surface in a BTN3A1-dependent manner. BTN2A1 and BTN3A1 also directly interact with each other in cis, and structural analysis revealed formation of W-shaped heteromeric multimers. This BTN2A1-BTN3A1 interaction involved the same epitopes that BTN2A1 and BTN3A1 each use to mediate the γδTCR interaction; indeed, locking BTN2A1 and BTN3A1 together abrogated their interaction with γδTCR, supporting a model wherein the two γδTCR ligand-binding sites depend on accessibility to cryptic BTN epitopes. Our findings reveal a new paradigm in immune activation, whereby γδTCRs sense dual epitopes on BTN complexes.

2.
Nat Immunol ; 24(11): 1890-1907, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37749325

RESUMO

CD8+ T cells provide robust antiviral immunity, but how epitope-specific T cells evolve across the human lifespan is unclear. Here we defined CD8+ T cell immunity directed at the prominent influenza epitope HLA-A*02:01-M158-66 (A2/M158) across four age groups at phenotypic, transcriptomic, clonal and functional levels. We identify a linear differentiation trajectory from newborns to children then adults, followed by divergence and a clonal reset in older adults. Gene profiles in older adults closely resemble those of newborns and children, despite being clonally distinct. Only child-derived and adult-derived A2/M158+CD8+ T cells had the potential to differentiate into highly cytotoxic epitope-specific CD8+ T cells, which was linked to highly functional public T cell receptor (TCR)αß signatures. Suboptimal TCRαß signatures in older adults led to less proliferation, polyfunctionality, avidity and recognition of peptide mutants, although displayed no signs of exhaustion. These data suggest that priming T cells at different stages of life might greatly affect CD8+ T cell responses toward viral infections.


Assuntos
Linfócitos T CD8-Positivos , Longevidade , Recém-Nascido , Humanos , Idoso , Epitopos de Linfócito T/genética , Linfócitos T Citotóxicos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T/genética
3.
Nat Immunol ; 20(9): 1110-1128, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31406380

RESUMO

In recent years, a population of unconventional T cells called 'mucosal-associated invariant T cells' (MAIT cells) has captured the attention of immunologists and clinicians due to their abundance in humans, their involvement in a broad range of infectious and non-infectious diseases and their unusual specificity for microbial riboflavin-derivative antigens presented by the major histocompatibility complex (MHC) class I-like protein MR1. MAIT cells use a limited T cell antigen receptor (TCR) repertoire with public antigen specificities that are conserved across species. They can be activated by TCR-dependent and TCR-independent mechanisms and exhibit rapid, innate-like effector responses. Here we review evidence showing that MAIT cells are a key component of the immune system and discuss their basic biology, development, role in disease and immunotherapeutic potential.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Menor/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Antígenos/imunologia , Suscetibilidade a Doenças/imunologia , Humanos , Ativação Linfocitária/imunologia , Camundongos , Neoplasias/imunologia
4.
Immunity ; 55(12): 2211-2216, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36516812

RESUMO

CD1 molecules and the MHC-related protein 1 (MR1) present lipid and small molecule antigens, respectively, for T cell surveillance. The biology of these molecules, the antigens they present, and the T cells that respond to them were recently discussed during the 12th International CD1-MR1 Meeting held in Gothenburg, Sweden.


Assuntos
Antígenos CD1 , Antígenos de Histocompatibilidade Classe I , Antígenos de Histocompatibilidade Menor , Antígenos CD1/metabolismo , Linfócitos T , Antígenos , Apresentação de Antígeno
5.
Nat Immunol ; 18(4): 402-411, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28166217

RESUMO

The major-histocompatibility-complex-(MHC)-class-I-related molecule MR1 can present activating and non-activating vitamin-B-based ligands to mucosal-associated invariant T cells (MAIT cells). Whether MR1 binds other ligands is unknown. Here we identified a range of small organic molecules, drugs, drug metabolites and drug-like molecules, including salicylates and diclofenac, as MR1-binding ligands. Some of these ligands inhibited MAIT cells ex vivo and in vivo, while others, including diclofenac metabolites, were agonists. Crystal structures of a T cell antigen receptor (TCR) from a MAIT cell in complex with MR1 bound to the non-stimulatory and stimulatory compounds showed distinct ligand orientations and contacts within MR1, which highlighted the versatility of the MR1 binding pocket. The findings demonstrated that MR1 was able to capture chemically diverse structures, spanning mono- and bicyclic compounds, that either inhibited or activated MAIT cells. This indicated that drugs and drug-like molecules can modulate MAIT cell function in mammals.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Células T Invariantes Associadas à Mucosa/efeitos dos fármacos , Células T Invariantes Associadas à Mucosa/metabolismo , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X , Descoberta de Drogas , Antígenos de Histocompatibilidade Classe I/química , Humanos , Ligação de Hidrogênio , Ligantes , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Antígenos de Histocompatibilidade Menor/química , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Células T Invariantes Associadas à Mucosa/imunologia , Ligação Proteica , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/metabolismo , Relação Estrutura-Atividade
6.
Nat Immunol ; 17(11): 1300-1311, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27668799

RESUMO

Mucosal-associated invariant T cells (MAIT cells) detect microbial vitamin B2 derivatives presented by the antigen-presenting molecule MR1. Here we defined three developmental stages and checkpoints for the MAIT cell lineage in humans and mice. Stage 1 and stage 2 MAIT cells predominated in thymus, while stage 3 cells progressively increased in abundance extrathymically. Transition through each checkpoint was regulated by MR1, whereas the final checkpoint that generated mature functional MAIT cells was controlled by multiple factors, including the transcription factor PLZF and microbial colonization. Furthermore, stage 3 MAIT cell populations were expanded in mice deficient in the antigen-presenting molecule CD1d, suggestive of a niche shared by MAIT cells and natural killer T cells (NKT cells). Accordingly, this study maps the developmental pathway and checkpoints that control the generation of functional MAIT cells.


Assuntos
Diferenciação Celular/imunologia , Células T Invariantes Associadas à Mucosa/citologia , Células T Invariantes Associadas à Mucosa/fisiologia , Timo/imunologia , Timo/metabolismo , Animais , Antígenos CD1d/genética , Biomarcadores , Diferenciação Celular/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Imunofenotipagem , Células Progenitoras Linfoides/imunologia , Células Progenitoras Linfoides/metabolismo , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/genética
8.
Nat Immunol ; 14(11): 1137-45, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24076636

RESUMO

The T cell repertoire comprises αß and γδ T cell lineages. Although it is established how αß T cell antigen receptors (TCRs) interact with antigen presented by antigen-presenting molecules, this is unknown for γδ TCRs. We describe a population of human Vδ1(+) γδ T cells that exhibit autoreactivity to CD1d and provide a molecular basis for how a γδ TCR binds CD1d-α-galactosylceramide (α-GalCer). The γδ TCR docked orthogonally, over the A' pocket of CD1d, in which the Vδ1-chain, and in particular the germ line-encoded CDR1δ loop, dominated interactions with CD1d. The TCR γ-chain sat peripherally to the interface, with the CDR3γ loop representing the principal determinant for α-GalCer specificity. Accordingly, we provide insight into how a γδ TCR binds specifically to a lipid-loaded antigen-presenting molecule.


Assuntos
Antígenos CD1d/química , Galactosilceramidas/química , Simulação de Acoplamento Molecular , Receptores de Antígenos de Linfócitos T gama-delta/química , Subpopulações de Linfócitos T/imunologia , Sequência de Aminoácidos , Antígenos CD1d/imunologia , Sítios de Ligação , Bases de Dados de Proteínas , Galactosilceramidas/imunologia , Humanos , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Subpopulações de Linfócitos T/citologia
9.
Immunity ; 44(1): 32-45, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26795251

RESUMO

A characteristic of mucosal-associated invariant T (MAIT) cells is the expression of TRAV1-2(+) T cell receptors (TCRs) that are activated by riboflavin metabolite-based antigens (Ag) presented by the MHC-I related molecule, MR1. Whether the MR1-restricted T cell repertoire and associated Ag responsiveness extends beyond these cells remains unclear. Here, we describe MR1 autoreactivity and folate-derivative reactivity in a discrete subset of TRAV1-2(+) MAIT cells. This recognition was attributable to CDR3ß loop-mediated effects within a consensus TRAV1-2(+) TCR-MR1-Ag footprint. Furthermore, we have demonstrated differential folate- and riboflavin-derivative reactivity by a diverse population of "atypical" TRAV1-2(-) MR1-restricted T cells. We have shown that TRAV1-2(-) T cells are phenotypically heterogeneous and largely distinct from TRAV1-2(+) MAIT cells. A TRAV1-2(-) TCR docks more centrally on MR1, thereby adopting a markedly different molecular footprint to the TRAV1-2(+) TCR. Accordingly, diversity within the MR1-restricted T cell repertoire leads to differing MR1-restricted Ag specificity.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T/imunologia , Autoimunidade/imunologia , Cristalografia por Raios X , Citometria de Fluxo , Antígenos de Histocompatibilidade Classe I/química , Humanos , Imunidade nas Mucosas/imunologia , Células Jurkat , Antígenos de Histocompatibilidade Menor , Receptores de Antígenos de Linfócitos T/química , Ressonância de Plasmônio de Superfície
10.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34845016

RESUMO

Unlike conventional αß T cells, γδ T cells typically recognize nonpeptide ligands independently of major histocompatibility complex (MHC) restriction. Accordingly, the γδ T cell receptor (TCR) can potentially recognize a wide array of ligands; however, few ligands have been described to date. While there is a growing appreciation of the molecular bases underpinning variable (V)δ1+ and Vδ2+ γδ TCR-mediated ligand recognition, the mode of Vδ3+ TCR ligand engagement is unknown. MHC class I-related protein, MR1, presents vitamin B metabolites to αß T cells known as mucosal-associated invariant T cells, diverse MR1-restricted T cells, and a subset of human γδ T cells. Here, we identify Vδ1/2- γδ T cells in the blood and duodenal biopsy specimens of children that showed metabolite-independent binding of MR1 tetramers. Characterization of one Vδ3Vγ8 TCR clone showed MR1 reactivity was independent of the presented antigen. Determination of two Vδ3Vγ8 TCR-MR1-antigen complex structures revealed a recognition mechanism by the Vδ3 TCR chain that mediated specific contacts to the side of the MR1 antigen-binding groove, representing a previously uncharacterized MR1 docking topology. The binding of the Vδ3+ TCR to MR1 did not involve contacts with the presented antigen, providing a basis for understanding its inherent MR1 autoreactivity. We provide molecular insight into antigen-independent recognition of MR1 by a Vδ3+ γδ TCR that strengthens an emerging paradigm of antibody-like ligand engagement by γδ TCRs.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Linfócitos Intraepiteliais/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Adulto , Apresentação de Antígeno , Feminino , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/fisiologia , Humanos , Linfócitos Intraepiteliais/fisiologia , Ligantes , Masculino , Antígenos de Histocompatibilidade Menor/química , Antígenos de Histocompatibilidade Menor/fisiologia , Células T Invariantes Associadas à Mucosa/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/fisiologia , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/fisiologia
11.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33893175

RESUMO

Neutralizing antibodies are important for immunity against SARS-CoV-2 and as therapeutics for the prevention and treatment of COVID-19. Here, we identified high-affinity nanobodies from alpacas immunized with coronavirus spike and receptor-binding domains (RBD) that disrupted RBD engagement with the human receptor angiotensin-converting enzyme 2 (ACE2) and potently neutralized SARS-CoV-2. Epitope mapping, X-ray crystallography, and cryo-electron microscopy revealed two distinct antigenic sites and showed two neutralizing nanobodies from different epitope classes bound simultaneously to the spike trimer. Nanobody-Fc fusions of the four most potent nanobodies blocked ACE2 engagement with RBD variants present in human populations and potently neutralized both wild-type SARS-CoV-2 and the N501Y D614G variant at concentrations as low as 0.1 nM. Prophylactic administration of either single nanobody-Fc or as mixtures reduced viral loads by up to 104-fold in mice infected with the N501Y D614G SARS-CoV-2 virus. These results suggest a role for nanobody-Fc fusions as prophylactic agents against SARS-CoV-2.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , SARS-CoV-2/imunologia , Anticorpos de Domínio Único , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/farmacologia , COVID-19/imunologia , Camelídeos Americanos , Humanos , Camundongos , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/farmacologia
12.
Med Microbiol Immunol ; 212(4): 291-305, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37477828

RESUMO

Emerging SARS-CoV-2 variants, notably Omicron, continue to remain a formidable challenge to worldwide public health. The SARS-CoV-2 receptor-binding domain (RBD) is a hotspot for mutations, reflecting its critical role at the ACE2 interface during viral entry. Here, we comprehensively investigated the impact of RBD mutations, including 5 variants of concern (VOC) or interest-including Omicron (BA.2)-and 33 common point mutations, both on IgG recognition and ACE2-binding inhibition, as well as FcγRIIa- and FcγRIIIa-binding antibodies, in plasma from two-dose BNT162b2-vaccine recipients and mild-COVID-19 convalescent subjects obtained during the first wave using a custom-designed bead-based 39-plex array. IgG-recognition and FcγR-binding antibodies were decreased against the RBD of Beta and Omicron, as well as point mutation G446S, found in several Omicron sub-variants as compared to wild type. Notably, while there was a profound decrease in ACE2 inhibition against Omicron, FcγR-binding antibodies were less affected, suggesting that Fc functional antibody responses may be better retained against the RBD of Omicron in comparison to neutralization. Furthermore, while measurement of RBD-ACE2-binding affinity via biolayer interferometry showed that all VOC RBDs have enhanced affinity to human ACE2, we demonstrate that human ACE2 polymorphisms, E35K (rs1348114695) has reduced affinity to VOCs, while K26R (rs4646116) and S19P (rs73635825) have increased binding kinetics to the RBD of VOCs, potentially affecting virus-host interaction and, thereby, host susceptibility. Collectively, our findings provide in-depth coverage of the impact of RBD mutations on key facets of host-virus interactions.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2/genética , Vacina BNT162 , Imunoglobulina G , Mutação , Receptores de IgG , SARS-CoV-2/genética
13.
Immunol Cell Biol ; 100(2): 112-126, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34940995

RESUMO

MHC-related protein 1 (MR1) presents microbial riboflavin metabolites to mucosal-associated invariant T (MAIT) cells for surveillance of microbial presence. MAIT cells express a semi-invariant T-cell receptor (TCR), which recognizes MR1-antigen complexes in a pattern-recognition-like manner. Recently, diverse populations of MR1-restricted T cells have been described that exhibit broad recognition of tumor cells and appear to recognize MR1 in association with tumor-derived self-antigens, though the identity of these antigens remains unclear. Here, we have used TCR gene transfer and engineered MR1-expressing antigen-presenting cells to probe the MR1 restriction and antigen reactivity of a range of MR1-restricted TCRs, including model tumor-reactive TCRs. We confirm MR1 reactivity by these TCRs, show differential dependence on lysine at position 43 of MR1 (K43) and demonstrate competitive inhibition by the MR1 ligand 6-formylpterin. TCR-expressing reporter lines, however, failed to recapitulate the robust tumor specificity previously reported, suggesting an importance of accessory molecules for MR1-dependent tumor reactivity. Finally, MR1-mutant cell lines showed that distinct residues on the α1/α2 helices were required for TCR binding by different MR1-restricted T cells and suggested central but distinct docking modes by the broad family of MR1-restricted αß TCRs. Collectively, these data are consistent with recognition of distinct antigens by diverse MR1-restricted T cells.


Assuntos
Células T Invariantes Associadas à Mucosa , Receptores de Antígenos de Linfócitos T alfa-beta , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética
14.
J Immunol ; 204(5): 1119-1133, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31988181

RESUMO

Mucosal-associated invariant T (MAIT) cells are important for immune responses against microbial infections. Although known to undergo marked numerical changes with age in humans, our understanding of how MAIT cells are altered during different phases across the human life span is largely unknown. Although also abundant in the tissues, our study focuses on MAIT cell analyses in blood. Across the human life span, we show that naive-like MAIT cells in umbilical cord blood switch to a central/effector memory-like profile that is sustained into older age. Whereas low-grade levels of plasma cytokine/chemokine were apparent in older donors (>65 y old), surprisingly, they did not correlate with the ex vivo MAIT hyperinflammatory cytokine profile observed in older adults. Removal of MAIT cells from older individuals and an aged environment resulted in the reversal of the baseline effector molecule profile comparable with MAIT cells from younger adults. An upregulated basal inflammatory profile accounted for reduced Escherichia coli-specific responses in aged MAIT cells compared with their young adult counterparts when fold change in expression levels of GzmB, CD107a, IFN-γ, and TNF was examined. However, the magnitude of antimicrobial MR1-dependent activation remained as potent and polyfunctional as with younger adults. Paired TCRαß analyses of MAIT cells revealed large clonal expansions in older adults and tissues that rivalled, remarkably, the TCRαß repertoire diversity of virus-specific CD8+ T cells. These data suggest that MAIT cells in older individuals, although associated with large clonal TCRαß expansions and increased baseline inflammatory potential, demonstrate plasticity and provide potent antimicrobial immunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Adulto , Idoso , Escherichia coli/imunologia , Feminino , Granzimas/imunologia , Humanos , Interferon gama/imunologia , Proteína 1 de Membrana Associada ao Lisossomo/imunologia , Masculino , Pessoa de Meia-Idade , Fator de Necrose Tumoral alfa/imunologia , Vírus/imunologia
15.
J Immunol ; 201(10): 2862-2871, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30397170

RESUMO

Mucosal-associated invariant T (MAIT) cells are characterized by a semi-invariant TCR that recognizes vitamin B metabolite Ags presented by the MHC-related molecule MR1. Their Ag restriction determines a unique developmental lineage, imbuing a tissue-homing, preprimed phenotype with antimicrobial function. A growing body of literature indicates that MR1-restricted T cells are more diverse than the MAIT term implies. Namely, it is increasingly clear that TCR α- and TCR ß-chain diversity within the MR1-restricted repertoire provides a potential mechanism of Ag discrimination, and context-dependent functional variation suggests a role for MR1-restricted T cells in diverse physiological settings. In this paper, we summarize MR1-restricted T cell biology, with an emphasis on TCR diversity, Ag discrimination, and functional heterogeneity.


Assuntos
Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Menor/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Humanos , Células T Invariantes Associadas à Mucosa/citologia , Subpopulações de Linfócitos T/citologia
16.
Immunol Cell Biol ; 96(5): 507-525, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29437263

RESUMO

Mucosal-associated invariant T (MAIT) cells represent up to 10% of circulating human T cells. They are usually defined using combinations of non-lineage-specific (surrogate) markers such as anti-TRAV1-2, CD161, IL-18Rα and CD26. The development of MR1-Ag tetramers now permits the specific identification of MAIT cells based on T-cell receptor specificity. Here, we compare these approaches for identifying MAIT cells and show that surrogate markers are not always accurate in identifying these cells, particularly the CD4+ fraction. Moreover, while all MAIT cell subsets produced comparable levels of IFNγ, TNF and IL-17A, the CD4+ population produced more IL-2 than the other subsets. In a human ontogeny study, we show that the frequencies of most MR1 tetramer+ MAIT cells, with the exception of CD4+ MAIT cells, increased from birth to about 25 years of age and declined thereafter. We also demonstrate a positive association between the frequency of MAIT cells and other unconventional T cells including Natural Killer T (NKT) cells and Vδ2+ γδ T cells. Accordingly, this study demonstrates that MAIT cells are phenotypically and functionally diverse, that surrogate markers may not reliably identify all of these cells, and that their numbers are regulated in an age-dependent manner and correlate with NKT and Vδ2+ γδ T cells.


Assuntos
Envelhecimento/imunologia , Células Sanguíneas/imunologia , Separação Celular/métodos , Células T Invariantes Associadas à Mucosa/imunologia , Células T Matadoras Naturais/imunologia , Subpopulações de Linfócitos T/imunologia , Biomarcadores/metabolismo , Diferenciação Celular , Células Cultivadas , Citocinas/metabolismo , Citometria de Fluxo , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Ativação Linfocitária , Antígenos de Histocompatibilidade Menor/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Especificidade do Receptor de Antígeno de Linfócitos T
18.
J Transl Med ; 14: 259, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27599546

RESUMO

BACKGROUND: The Vk*MYC transgenic and transplant mouse models of multiple myeloma (MM) are well established as a research tool for anti-myeloma drug discovery. However, little is known of the immune response in these models. Understanding the immunological relevance of these models is of increasing importance as immunotherapeutic drugs are developed against MM. METHODS: We set out to examine how cellular immunity is affected in Vk*MYC mouse models and compare that to the immunology of patients with newly diagnosed and relapsed/refractory MM. RESULTS: We found that there were significant immunological responses in mice developing either spontaneous (transgenic) or transplanted MM as a consequence of the degree of tumor burden. Particularly striking were the profound B cell lymphopenia and the expansion of CD8(+) effector memory T cells within the lymphocyte population that progressively developed with advancing disease burden, mirroring changes seen in human MM. High disease burden was also associated with increased inflammatory cytokine production by T lymphocytes, which is more fitting with relapsed/refractory MM in humans. CONCLUSIONS: These findings have important implications for the application of this mouse model in the development of MM immunotherapies. Trial registration LitVacc ANZCTR trial ID ACTRN12613000344796; RevLite ANZCTR trial ID NCT00482261.


Assuntos
Mieloma Múltiplo/imunologia , Mieloma Múltiplo/terapia , Transplante de Neoplasias , Animais , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Memória Imunológica , Mediadores da Inflamação/metabolismo , Linfopenia/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mieloma Múltiplo/diagnóstico
19.
J Immunol ; 192(9): 4054-60, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24683194

RESUMO

Current views emphasize TCR diversity as a key feature that differentiates the group 1 (CD1a, CD1b, CD1c) and group 2 (CD1d) CD1 systems. Whereas TCR sequence motifs define CD1d-reactive NKT cells, the available data do not allow a TCR-based organization of the group 1 CD1 repertoire. The observed TCR diversity might result from donor-to-donor differences in TCR repertoire, as seen for MHC-restricted T cells. Alternatively, diversity might result from differing CD1 isoforms, Ags, and methods used to identify TCRs. Using CD1b tetramers to isolate clones recognizing the same glycolipid, we identified a previously unknown pattern of V gene usage (TRAV17, TRBV4-1) among unrelated human subjects. These TCRs are distinct from those present on NKT cells and germline-encoded mycolyl lipid-reactive T cells. Instead, they resemble the TCR of LDN5, one of the first known CD1b-reactive clones that was previously thought to illustrate the diversity of the TCR repertoire. Interdonor TCR conservation was observed in vitro and ex vivo, identifying LDN5-like T cells as a distinct T cell type. These data support TCR-based organization of the CD1b repertoire, which consists of at least two compartments that differ in TCR sequence motifs, affinity, and coreceptor expression.


Assuntos
Motivos de Aminoácidos/imunologia , Receptores de Antígenos de Linfócitos T/química , Subpopulações de Linfócitos T/química , Antígenos CD1/imunologia , Sequência de Bases , Sequência Conservada/imunologia , Citometria de Fluxo , Glicolipídeos/imunologia , Humanos , Dados de Sequência Molecular , Receptores de Antígenos de Linfócitos T/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Subpopulações de Linfócitos T/imunologia
20.
Biol Blood Marrow Transplant ; 21(2): 242-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25459639

RESUMO

Immunosuppressive pretransplantation conditioning is essential for donor cell engraftment in allogeneic bone marrow transplantation (BMT). The role of residual postconditioning recipient immunity in determining engraftment is poorly understood. We examined the role of recipient perforin in the kinetics of donor cell engraftment. MHC-mismatched BMT mouse models demonstrated that both the rate and proportion of donor lymphoid cell engraftment and expansion of effector memory donor T cells in both spleen and BM were significantly increased within 5 to 7 days post-BMT in perforin-deficient (pfn(-/-)) recipients, compared with wild-type. In wild-type recipients, depletion of natural killer (NK) cells before BMT enhanced donor lymphoid cell engraftment to that seen in pfn(-/-) recipients. This demonstrated that a perforin-dependent, NK-mediated, host-versus-graft (HVG) effect limits the rate of donor engraftment and T cell activation. Radiation-resistant natural killer T (NKT) cells survived in the BM of lethally irradiated mice and may drive NK cell activation, resulting in the HVG effect. Furthermore, reduced pretransplant irradiation doses in pfn(-/-) recipients permitted long-term donor lymphoid cell engraftment. These findings suggest that suppression of perforin activity or selective depletion of recipient NK cells before BMT could be used to improve donor stem cell engraftment, in turn allowing for the reduction of pretransplant conditioning.


Assuntos
Transplante de Medula Óssea , Sobrevivência de Enxerto , Doença Enxerto-Hospedeiro/prevenção & controle , Células Matadoras Naturais/efeitos da radiação , Proteínas Citotóxicas Formadoras de Poros/imunologia , Linfócitos T/imunologia , Animais , Feminino , Expressão Gênica , Reação Hospedeiro-Enxerto/efeitos da radiação , Memória Imunológica , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Depleção Linfocítica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Citotóxicas Formadoras de Poros/deficiência , Proteínas Citotóxicas Formadoras de Poros/genética , Tolerância a Radiação , Linfócitos T/citologia , Transplante Homólogo , Irradiação Corporal Total
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA