Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Neurosci ; 10: 147, 2009 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-20003453

RESUMO

BACKGROUND: Sensory neurons display transient changes of their response properties following prolonged exposure to an appropriate stimulus (adaptation). In adult cat primary visual cortex, orientation-selective neurons shift their preferred orientation after being adapted to a non-preferred orientation. The direction of those shifts, towards (attractive) or away (repulsive) from the adapter depends mostly on adaptation duration. How the adaptive behavior of a neuron is related to that of its neighbors remains unclear. RESULTS: Here we show that in most cases (75%), cells shift their preferred orientation in the same direction as their neighbors. We also found that cells shifting preferred orientation differently from their neighbors (25%) display three interesting properties: (i) larger variance of absolute shift amplitude, (ii) wider tuning bandwidth and (iii) larger range of preferred orientations among the cluster of cells. Several response properties of V1 neurons depend on their location within the cortical orientation map. Our results suggest that recording sites with both attractive and repulsive shifts following adaptation may be located in close proximity to iso-orientation domain boundaries or pinwheel centers. Indeed, those regions have a more diverse orientation distribution of local inputs that could account for the three properties above. On the other hand, sites with all cells shifting their preferred orientation in the same direction could be located within iso-orientation domains. CONCLUSIONS: Our results suggest that the direction and amplitude of orientation preference shifts in V1 depend on location within the orientation map. This anisotropy of adaptation-induced plasticity, comparable to that of the visual cortex itself, could have important implications for our understanding of visual adaptation at the psychophysical level.


Assuntos
Plasticidade Neuronal/fisiologia , Células Receptoras Sensoriais/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Adaptação Fisiológica , Animais , Anisotropia , Gatos
2.
BMC Neurosci ; 9: 60, 2008 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-18598368

RESUMO

BACKGROUND: Visual neurons respond essentially to luminance variations occurring within their receptive fields. In primary visual cortex, each neuron is a filter for stimulus features such as orientation, motion direction and velocity, with the appropriate combination of features eliciting maximal firing rate. Temporal correlation of spike trains was proposed as a potential code for linking the neuronal responses evoked by various features of a same object. In the present study, synchrony strength was measured between cells following an adaptation protocol (prolonged exposure to a non-preferred stimulus) which induce plasticity of neurons' orientation preference. RESULTS: Multi-unit activity from area 17 of anesthetized adult cats was recorded. Single cells were sorted out and (1) orientation tuning curves were measured before and following 12 min adaptation and 60 min after adaptation (2) pairwise synchrony was measured by an index that was normalized in relation to the cells' firing rate. We first observed that the prolonged presentation of a non-preferred stimulus produces attractive (58%) and repulsive (42%) shifts of cell's tuning curves. It follows that the adaptation-induced plasticity leads to changes in preferred orientation difference, i.e. increase or decrease in tuning properties between neurons. We report here that, after adaptation, the neuron pairs that shared closer tuning properties display a significant increase of synchronization. Recovery from adaptation was accompanied by a return to the initial synchrony level. CONCLUSION: We conclude that synchrony reflects the similarity in neurons' response properties, and varies accordingly when these properties change.


Assuntos
Adaptação Fisiológica/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Orientação/fisiologia , Córtex Visual/fisiologia , Potenciais de Ação/fisiologia , Animais , Gatos , Comunicação Celular/fisiologia , Sensibilidades de Contraste/fisiologia , Eletrofisiologia , Potenciais Evocados Visuais/fisiologia , Modelos Neurológicos , Neurônios/citologia , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa/métodos , Córtex Visual/citologia
4.
PLoS One ; 3(11): e3689, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18997867

RESUMO

BACKGROUND: A canonical proposition states that, in mature brain, neurons responsive to sensory stimuli are tuned to specific properties installed shortly after birth. It is amply demonstrated that that neurons in adult visual cortex of cats are orientation-selective that is they respond with the highest firing rates to preferred oriented stimuli. METHODOLOGY/PRINCIPAL FINDINGS: In anesthetized cats, prepared in a conventional fashion for single cell recordings, the present investigation shows that presenting a stimulus uninterruptedly at a non-preferred orientation for twelve minutes induces changes in orientation preference. Across all conditions orientation tuning curves were investigated using a trial by trial method. Contrary to what has been previously reported with shorter adaptation duration, twelve minutes of adaptation induces mostly attractive shifts, i.e. toward the adapter. After a recovery period allowing neurons to restore their original orientation tuning curves, we carried out a second adaptation which produced three major results: (1) more frequent attractive shifts, (2) an increase of their magnitude, and (3) an additional enhancement of responses at the new or acquired preferred orientation. Additionally, we also show that the direction of shifts depends on the duration of the adaptation: shorter adaptation in most cases produces repulsive shifts, whereas adaptation exceeding nine minutes results in attractive shifts, in the same unit. Consequently, shifts in preferred orientation depend on the duration of adaptation. CONCLUSION/SIGNIFICANCE: The supplementary response improvements indicate that neurons in area 17 keep a memory trace of the previous stimulus properties, thereby upgrading cellular performance. It also highlights the dynamic nature of basic neuronal properties in adult cortex since repeated adaptations modified both the orientation tuning selectivity and the response strength to the preferred orientation. These enhanced neuronal responses suggest that the range of neuronal plasticity available to the visual system is broader than anticipated.


Assuntos
Plasticidade Neuronal/fisiologia , Orientação/fisiologia , Córtex Visual/fisiologia , Animais , Gatos , Sensibilidades de Contraste/fisiologia , Eletrofisiologia , Potenciais Evocados Visuais/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Estimulação Luminosa , Percepção Espacial/fisiologia , Córtex Visual/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA