Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000972

RESUMO

With the continuous development of new sensor features and tracking algorithms for object tracking, researchers have opportunities to experiment using different combinations. However, there is no standard or agreed method for selecting an appropriate architecture for autonomous vehicle (AV) crash reconstruction using multi-sensor-based sensor fusion. This study proposes a novel simulation method for tracking performance evaluation (SMTPE) to solve this problem. The SMTPE helps select the best tracking architecture for AV crash reconstruction. This study reveals that a radar-camera-based centralized tracking architecture of multi-sensor fusion performed the best among three different architectures tested with varying sensor setups, sampling rates, and vehicle crash scenarios. We provide a brief guideline for the best practices in selecting appropriate sensor fusion and tracking architecture arrangements, which can be helpful for future vehicle crash reconstruction and other AV improvement research.

2.
Sensors (Basel) ; 22(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35808559

RESUMO

The Internet of Things (IoT) is one of the fastest emerging technologies in the industry. It includes diverse applications with different requirements to provide services to users. Secure, low-powered, and long-range transmissions are some of the most vital requirements in developing IoT applications. IoT uses several communication technologies to fulfill transmission requirements. However, Low Powered Wide Area Networks (LPWAN) transmission standards have been gaining attention because of their exceptional low-powered and long-distance transmission capabilities. The features of LPWAN transmission standards make them a perfect candidate for IoT applications. However, the current LPWAN standards lack state-of-the-art security mechanism s because of the limitations of the IoT devices in energy and computational capacity. Most of the LPWAN standards, such as Sigfox, NB-IoT, and Weightless, use static keys for node authentication and encryption. LoRaWAN is the only LPWAN technology providing session key mechanisms for better security. However, the session key mechanism is vulnerable to replay attacks. In this paper, we propose a centralized lightweight session key mechanism for LPWAN standards using the Blom-Yang key agreement (BYka) mechanism. The security of the session key mechanism is tested using the security verification tool Scyther. In addition, an energy consumption model is implemented on the LoRaWAN protocol using the NS3 simulator to verify the energy depletion in a LoRaWAN node because of the proposed session key mechanisms. The proposed session key is also verified on the Mininet-WiFi emulator for its correctness. The analysis demonstrates that the proposed session key mechanism uses a fewer number of transmissions than the existing session key mechanisms in LPWAN and provides mechanisms against replay attacks that are possible in current LPWAN session key schemes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA