Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Microb Pathog ; 172: 105777, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36152795

RESUMO

Pathogenic microorganisms are responsible for many diseases in biological organisms, including humans. Many of these infections thrive in hospitals, where people are treated with medicines and certain bacteria resist those treatments. Consequently, this research article aims to develop efficient antimicrobial material-based conjugated and functionalized polypropargyl alcohol nanoparticles (nano-PGA) synthesized by gamma irradiation. The monomer of PGA was polymerized in various mediums (water (W), chloroform (Ch), and dimethylformamide (DMF)) without catalysts under the action of γ-rays, producing π-conjugated and colored functional nano-PGA polymers. Nano-PGA is a versatile polymer demonstrated here as suitable for creating next-generation of antimicrobial systems capable of effectively preventing and killing various pathogenic microorganisms. The novelty here is the development of polymeric nanostructures by changing the solvent and irradiation doses. The antimicrobial property of nano-PGA (nanostare-like antibody structure) was examined against different pathogenic bacteria and unicellular fungi. Nano-PGA-DMF exhibits significant antimicrobial potential against Staphylococcus aureus (S. aureus) (20.20 mm; zone of inhibition (ZOI), and 0.47 µg/mL; minimum inhibitory concentration (MIC), followed by Escherichia coli (E. coli) (14.50 mm; ZOI, and 1.87 µg/mL; MIC, and Candida albicans (C.albicans) (12.50 mm; ZOI, and 1.87 µg/mL; MIC). In antibiofilm results, the highest inhibition percentage of the synthesized nano-PGA-W, nano-PGA-Ch, and nano-PGA-DMF was documented for S. aureus (17.01%, 37.57%, and 80.27%), followed by E. coli (25.68%, 55.16% and 78.11%), and C.albicans (40.10%, 62.65%, and 76.19%), respectively. The amount of bacterial protein removed is directly proportional after increasing the concentration of nano-PGA-W, nano-PGA-Ch, and nano-PGA-DMF samples (at different concentrations) and counted to be 70.58, 102.89, and 200.87 µg/mL, respectively following the treatment with 1.0 mg/mL of each sample. It was found that the nano-PGA polymer prepared in DMF has better antimicrobial activity than one prepared in chloroform than in water.


Assuntos
Anti-Infecciosos , Staphylococcus aureus , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Bactérias , Proteínas de Bactérias , Candida albicans , Escherichia coli , Testes de Sensibilidade Microbiana , Polímeros , Farmacorresistência Bacteriana Múltipla
2.
Bioorg Chem ; 127: 105972, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35728290

RESUMO

The popularity of nanogel as nano drug carrier lies in its adjustable physical properties, and the ability to encapsulate drug particles with improved properties is being developed to meet the diverse pH-sensitive nanogel for anticancer agent. Monitoring pH has been identified as an important diagnostic element during the treatment process. A pH-sensitive nanogel consisting of (PEG/PMAc) in the ratio of (50:50%) hasbeen cross-linkedby γ-irradiation techniques at an irradiation dose of 5 kGy. Compound 4 and its nanogel 5 were synthesized and assessed for their anticancer effects against HepG2, A549, MCF-7 and HCT-116 as dual VEGFR-2 and EGFR tyrosine kinases inhibitors. The molecular design was performed to investigate the binding mode of compound 4 with VEGFR-2 and EGFR receptors. Our compound 5 in nanogel showed enhanced anticancer activities against the four tested cancer cell lines and also showed higher inhibition activities against VEGFR-2 and EGFRT790M kinases than the derivative 4. Finally, our derivative 4 showed good in silico calculated ADMET profile. It was expected to show good GIT absorption in human, lower CNS side effects, no hepatotoxic actions and higher acute and oral chronic toxic doses in comparing to sorafenib and erlotinib. The obtained results showed that, our compound could be useful as a template for future design, optimization, adaptation and investigation to produce more potent and selective dual VEGFR-2/EGFRT790M inhibitors with higher anticancer activity.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Acrilatos , Antineoplásicos/química , Proliferação de Células , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB , Etilenoglicol/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Simulação de Acoplamento Molecular , Mutação , Nanogéis , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular
3.
Biomed Chromatogr ; 35(4): e5023, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33169415

RESUMO

The introduced research presents a novel in vivo quantitative method for assay of mixtures of pregabalin and tramadol as a common combinations approved for treatment of neuropathic pain. Green analytical chemistry is a recently emerging science concerned with control of the use of chemicals harmful to the environment in various analytical methods. Consequently, a green high-performance thin layer chromatography (HPTLC) method was achieved for determination of the mixture in human plasma and urine satisfying both analytical and environmental standards. The separation was achieved on HPTLC sheets using a separating mixture of ethanol-ethyl acetate-acetone-ammonia solution (8:2:1:0.05, by volume) as a mobile phase. The sheets were dried in air then scanned at two wavelengths. For tramadol, 220 nm was chosen; however, pregabalin is an unconjugated drug, so its determination was a challenge. Hence for pregabalin, the plates were sprayed with ethanolic solution of ninhydrin (3%, w/v), to obtain a conjugated complex, which could be assessed at 550 nm. Furthermore, the developed method fulfilled the US Food and Drug Administration validation guidelines, and proved to be useful in therapeutic drug monitoring of this combination. The Eco-scale assessment protocol was implemented to determine the greenness profile of the applied method.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Cromatografia em Camada Fina/métodos , Pregabalina , Tramadol , Humanos , Limite de Detecção , Modelos Lineares , Pregabalina/sangue , Pregabalina/urina , Reprodutibilidade dos Testes , Tramadol/sangue , Tramadol/urina
4.
J Environ Manage ; 210: 307-315, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29358125

RESUMO

A new in-situ cationic polymerization was performed to synthesize a cross-linked (91%) polystyrene (PS) organogel through tetrachloroethylene radiolysis assisted by 60Co gamma rays. Hoernschemeyer diagram and swelling capacity test show a better selectivity of PS organogel to chlorinated molecules compared to ester, hydrocarbons and alcohols organic molecules by 80-184 folds. Response surface modeling (RSM) of CPs (2,4,6-trichlorophenol) sorption from artificial wastewater confirm superiority of PS organogel to absorb 1746 µmol CPs/g (∼345 mg CPs/g) at broad pH (4-10) and temperature (25-45 °C). Based on ANOVA statistic, simulated CPs absorption model onto PS organogel was successfully developed, with accuracy of prediction of R2≈ RAdj2 of 0.991-0.995 and lower coefficient of variation of 2.73% with Fmodel of 611.4 at p < .0001. Particularly, the usage of PS organogel for petroleum wastewater reclamation exhibited higher absorption affinities for all the organic contaminants especially for CPs (>99%) by non-covalent and/or dispersive interaction mechanisms with a well-term reusability and good stability up to 5 cycles.


Assuntos
Poliestirenos/química , Purificação da Água , Cátions , Clorofenóis , Resíduos Industriais , Indústria de Petróleo e Gás , Polimerização , Águas Residuárias
5.
Sci Rep ; 14(1): 4833, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38413688

RESUMO

The newest method for recycling waste linear low-density polyethylene (LLDPE) is the thermo-catalytic degradation technique known as catalytic pyrolysis. Typically, it is limited by 500-800 °C high temperatures. Catalytic pyrolysis releases toxins and forms harmful carbonized char. The current study is based on exposing wasted LLDPE to different gamma irradiation doses and then pyrolysis in castor oil (150-300 °C). The output product of Ir-(rLLDPE) is turned into another compound with a new structural architecture (sponge-like). SEM analysis confirms conversion, showing sponge-like spicules and layers. Ir-(rLLDPE) is sponge-like with a soft, malleable, absorbent texture. The DSC demonstrates altered thermal properties, with a melting point at 121 °C splitting into two peaks (endothermic at 117 °C and exothermic at 160 °C). The exothermic peaks signify the curing process of the sponge-like material. Ir-(rLLDPE) is assessed as an adsorbent for aqueous oils and solvents. The study examines irradiation doses, pyrolysis temperature, and time on adsorbent capacity. The oil removal obeys the Langmuir isotherm with monolayer adsorption, with a maximum adsorption capacity of 24.75 g/g of waste oil and 43 g/g of 1,1,2,2-tetrachloroethane. Squashing maintains adsorption after 20 reuses. Data shows sponges effectively clean marine oil spills and solvents.

6.
Sci Rep ; 14(1): 4829, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38413685

RESUMO

Nowadays, many researchers aim to fill polymer materials with inorganic nanoparticles to enhance the polymer properties and gain the merits of the polymeric host matrix. Sol-gel synthesized Co3O4 nanoparticles are subjected to different doses of electron beam (10, 20, and 30 kGy) to study their physiochemical properties and choose the optimized nanoparticles to fill our polymeric matrix. Crosslinked polyethylene (XLPE) has been filled with 5 wt % of un-irradiated cobalt oxide nanoparticles using the melt extruder method. The structural, optical, magnetic, and electrical properties of the XLPE/Co3O4 nanocomposite before and after exposure to different doses of electron beam radiation have been characterized. The crystallite size of face-centered cubic spinel Co3O4 nanoparticles has been confirmed by XRD whereas and their unique truncated octahedral shape obviously appears in SEM micrographs. The crystallite size of Co3O4 nanoparticles has decreased from 47.5 to 31.5 nm upon irradiation at a dose of 30 kGy, and significantly decreased to 18.5 nm upon filling inside XLPE matrix. Related to the oxidation effect of the electron beam, the Co2+/Co3+ ratio on the surface of Co3O4 nanoparticles has decreased upon irradiation as verified by XPS technique. This consequently caused the partial elimination of oxygen vacancies, mainly responsible for the weak ferromagnetic behavior of Co3O4 in its nanoscale. This appears as decreased saturation magnetization as depicted by VSM. The XLPE/Co3O4 nanocomposite has also shown weak ferromagnetic behavior but the coercive field (Hc) has increased from 112.57 to 175.72 G upon filling inside XLPE matrix and decreased to 135.18 G after irradiating the nanocomposite at a dose of 30 kGy. The ionic conductivity of XLPE has increased from 0.133 × 10-7 to 2.198 × 10-3 S/cm upon filling with Co3O4 nanoparticles while a slight increase is observed upon irradiation.

7.
Sci Rep ; 14(1): 15887, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987272

RESUMO

The deposition of paraffin on pipelines during crude oil transit and low-temperature restart processes poses a significant challenge for the oil industry. Addressing this issue necessitates the exploration of innovative materials and methods. Pour point depressants (PPDs) emerge as crucial processing aids to modify paraffin crystallization and enhance crude oil flow. This study focuses on the combustion of polyethylene terephthalate (PET) waste, a prevalent plastic, in two distinct oils (castor and jatropha). The resulting black waxy substances (PET/Castor and PET/Jatropha) were introduced in varying weights (1000, 2000, and 3000 ppm) to crude oil. The PET/castor oil combination demonstrated a remarkable reduction in pour point from 18 to -21 °C at 3000 ppm concentration, significantly more effective than PET/jatropha blends. Substantial decreases in viscosity (up to 75%) and shear stress (up to 72%) were also observed for both blends, most prominently at lower temperatures near the pour point. The synergistic effect of PET and oils as nucleating agents that alter crystallization patterns and restrict crystal growth contributes to this enhanced low-temperature flow. This highlights the potential of PET plastic waste as an economical, abundant, and eco-friendly additive to develop high-performance PPDs for crude oil.

8.
Sci Rep ; 14(1): 8863, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632269

RESUMO

Ethylene vinyl acetate (EVA) copolymers are widely employed as pour point depressants to enhance the flow properties of crude oil. However, EVA copolymers have limitations that necessitate their development. This work investigated the modification of EVA via gamma radiation-induced grafting of butyl acrylate (BuA) monomers and the evaluation of grafted EVA as a pour point depressant for crude oil. The successful grafting of poly(butyl acrylate) p(BuA) onto EVA was verified through grafting parameters, FTIR spectroscopy, and 1H NMR spectroscopy. Treating crude oil with 3000 ppm of (EVA)0kGy, (EVA)50kGy, and (1EVA:3BuA)50kGy yielded substantial reductions in pour point of 24, 21, and 21 °C, respectively. Also, rheological characterization demonstrated improving evidenced by a viscosity reduction of 76.20%, 67.70%, and 71.94% at 25 °C, and 83.16%, 74.98%, and 81.53% at 12 °C. At low dosages of 1000 ppm, the EVA-g-p(BuA) exhibited superior pour point reductions compared to unmodified EVA, highlighting the benefit of incorporating p(BuA) side chains. The grafted EVA copolymers with p(BuA) side chains showed excellent potential as crude oil flow improvers by promoting more effective adsorption and co-crystallization with paraffin wax molecules.

9.
Egypt Heart J ; 76(1): 34, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521846

RESUMO

BACKGROUND: Congenital portosystemic shunt (CPSS) is a vascular malformation in which portal blood drains toward the systemic circulation, leading to pulmonary hypertension. CASE PRESENTATION: A 10-year-old patient was brought for evaluation because of dyspnea on exertion. Echocardiography revealed a pulmonary hypertension of 75 mmHg, and multi-slice CT angiography revealed the presence of a CPSS. Closure was finally implemented using a muscular ventricular septal defect device. Follow-up of the patient revealed a gradual decline in pulmonary hypertension. CONCLUSIONS: CPSS is an overlooked cause of reversible pulmonary hypertension (PH). Closure of such lesions and reversal pulmonary hypertension are possible via catheterization. The preferred device type depends largely on the intervening team. Plugs are the first choice for interventional radiologists, while ventricular and atrial septal occluder devices and duct occluders are preferred by pediatric cardiologists.

10.
J Saudi Heart Assoc ; 36(1): 27-33, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873326

RESUMO

Background: Sickle Cell Disease (SCD) is not a hematologic disease that occurs in isolation; it results in multi-organ complications. There is growing evidence of vascular stiffness as its underlying cause. This study aimed to investigate the relationship between endothelial stiffness and LV dysfunction in SCD patients and to explore its pathophysiology, particularly regarding the depletion of vasodilators such as Nitric Oxide (NO). Methodology: 32 patients with established criteria for SCD and 40 healthy control subjects were selected for this case-control study. Comprehensive clinical assessment and assessment of endothelial function using Brachial Flow-mediated dilation (FMD) were performed, along with serum NO measurement, which was followed by diagnosis and echocardiographic assessment using 3D speckle tracking echocardiography (STE) and tissue Doppler imaging (TDI). Results: Collected SCD cases showed echocardiographic features of Systo-diastolic dysfunction with reduced FMD compared to controls, denoting endothelial dysfunction in those patients. LDH showed a marked elevation, while serum NO showed a significant reduction in cases compared with controls. We also noted a positive correlation between FMD on the one hand and measures of ventricular dysfunction and level of serum NO on the other hand, the latter proving that reduction of NO is responsible for reduced endothelial function. Conclusion: We present the first report to date to outline the role of vascular stiffness as measured by brachial FMD in the induction of left ventricular dysfunction in SCD. We recommend that more research be conducted regarding possible strategies to replenish serum NO stores to delay microvascular injury and, in turn, ventricular dysfunction in SCD.

11.
Ital J Pediatr ; 50(1): 11, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254126

RESUMO

BACKGROUND: Hemodialysis (HD) success is dependent mainly on vascular access (VA). The aim of this study is to share the experience of Pediatric Nephrology Unit (PNU), Cairo University Children's Hospital (CUCH), with VA-related obstacles in end stage kidney disease (ESKD) HD children. METHODS: This is a retrospective analysis of VA related data of 187 ESKD children received regular HD over 3 year duration (2019-2021). Kaplan-Meier curves were used to present arteriovenous fistula (AVF) and cuffed catheters survivals. RESULTS: Uncuffed central venous catheter (CVC) was the primary VA for HD in up to 97.3% with 2.7% of patients had AVF performed and attained maturation before initiation of regular HD. Fifty-six (29.9%) patients have inserted 120 tunneled CVCs. AVFs & AV grafts (AVF) were performed in 79 (42.2%) and 6 (3.2%) patients respectively. There were 112 uncuffed CVCs implanted beneath the screen in Rt internal jugular vein (IJV) (44%) Lt IJV (17%), right internal mammary vein (2.7%) while Trans hepatic (TH) technique was used to place 39 uncuffed CVCs (34%) in the inferior vena cava (IVC). Catheter-related bacteremia (CRB) was the most frequent complication in uncuffed and cuffed CVCs (2.58 / 100 catheters day and 10.1 /1000 catheter days respectively). AVFs achieved a high success rate (83%) after 757.71 ± 512.3 functioning days. CONCLUSION: Native AVF is the preferred VA for pediatric HD but its creation is limited by the small sized vessels where non-cuffed CVC could be a reasonable relatively long-term alternative. Challenging situations (occluded central veins) could benefit from TH technique of CVC insertion in IVC.


Assuntos
Bacteriemia , Falência Renal Crônica , Humanos , Criança , Estudos Retrospectivos , Diálise Renal , Falência Renal Crônica/terapia , Catéteres
12.
Front Immunol ; 15: 1347420, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686374

RESUMO

Introduction: Skin injuries represent a prevalent form of physical trauma, necessitating effective therapeutic strategies to expedite the wound healing process. Hesperidin, a bioflavonoid naturally occurring in citrus fruits, exhibits a range of pharmacological attributes, including antimicrobial, antioxidant, anti-inflammatory, anticoagulant, and analgesic properties. The main objective of the study was to formulate a hydrogel with the intention of addressing skin conditions, particularly wound healing. Methods: This research introduces a methodology for the fabrication of a membrane composed of a Polyvinyl alcohol - Sodium Alginate (PVA/A) blend, along with the inclusion of an anti-inflammatory agent, Hesperidin (H), which exhibits promising wound healing capabilities. A uniform layer of a homogeneous solution comprising PVA/A was cast. The process of crosslinking and the enhancement of hydrogel characteristics were achieved through the application of gamma irradiation at a dosage of 30 kGy. The membrane was immersed in a Hesperidin (H) solution, facilitating the permeation and absorption of the drug. The resultant system is designed to deliver H in a controlled and sustained manner, which is crucial for promoting efficient wound healing. The obtained PVA/AH hydrogel was evaluated for cytotoxicity, antioxidant and free radical scavenging activities, anti-inflammatory and membrane stability effect. In addition, its action on oxidative stress, and inflammatory markers was evaluated on BJ-1 human normal skin cell line. Results and Discussion: We determined the effect of radical scavenging activity PVA/A (49 %) and PVA/AH (87%), the inhibition of Human red blood cell membrane hemolysis by PVA/AH (81.97 and 84.34 %), hypotonicity (83.68 and 76.48 %) and protein denaturation (83.17 and 85.8 %) as compared to 250 µg/ml diclofenac (Dic.) and aspirin (Asp.), respectively. Furthermore, gene expression analysis revealed an increased expression of genes associated with anti-oxidant and anti-inflammatory properties and downregulated TNFα, NFκB, iNOS, and COX2 by 67, 52, 58 and 60%, respectively, by PVA/AH hydrogel compared to LPS-stimulated BJ-1 cells. The advantages associated with Hesperidin can be ascribed to its antioxidant and anti-inflammatory attributes. The incorporation of Hesperidin into hydrogels offers promise for the development of a novel, secure, and efficient strategy for wound healing. This innovative approach holds potential as a solution for wound healing, capitalizing on the collaborative qualities of PVA/AH and gamma irradiation, which can be combined to establish a drug delivery platform for Hesperidin.


Assuntos
Alginatos , Hesperidina , Hidrogéis , NF-kappa B , Álcool de Polivinil , Fator de Necrose Tumoral alfa , Hesperidina/farmacologia , Hesperidina/química , Álcool de Polivinil/química , Humanos , Alginatos/química , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Hidrogéis/química , Transdução de Sinais/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Cicatrização/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Antioxidantes/farmacologia , Antioxidantes/química , Inflamação/tratamento farmacológico
13.
Sci Rep ; 13(1): 19222, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932301

RESUMO

In this study, the development of advanced materials for the removal of oil-water pollution was explored, with a focus on environmental protection. The primary novelty of this research involved the conversion of waste Linear low-density polyethylene (LLDPE) into a sponge-like material denoted as sLLDPE. The process of converting involved thermal treatment in castor oil, resulting in the creation of a porous structure within the material. This sLLDPE material exhibited remarkable oil adsorbent properties and demonstrated enhanced performance in the removal of various organic contaminants from both aqueous and oil-based systems. Furthermore, gamma irradiation-induced crosslinking reactions were implemented within a dose range of 0 up to 90 kGy to further improve its oil removal capabilities. Comparing samples subjected to a radiation dose of 50 kGy with those receiving no irradiation (0 kGy), it was observed that the maximum adsorption capacities for various oils, including crude oil, gasoline oil, motor oil, pump oil, and waste oil, increased significantly. Specifically, the adsorption capacities increased by approximately 216.2%, 235.3%, 24.1%, 111.5%, and 18.6% for the respective oils. It rapidly separated oil-water mixtures with ~ 100% efficiency in a column system and maintained performance over 20 reuse cycles. The converted sLLDPE sponge exhibited excellent organics removal across solvents. The findings of this study not only shed light on the impact of irradiation on polymeric materials but also contribute to our understanding of their potential applications in environmental cleanup processes.

14.
Int J Biol Macromol ; 250: 126248, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37562465

RESUMO

The global threat of infectious diseases and antibiotic resistance calls for the development of potent antimicrobial agents integrated with hydrogel for effective control and treatment. Hydrogel is advanced biomaterials compounds. Hydrogel is an advanced biomaterial compound that offers tunable physical and chemical properties, which can be tailored to specific biomedical applications. This study investigates the antibacterial properties of pectin/polyethylene oxide (PEC/PEO)-based poly acrylamide hydrogels containing 5 wt% nano-metal oxides (TiO2, CaO, MgO, and ZnO) synthesized through gamma irradiation at a dose of 30 kGy. This technique allows for sterilization and effectively incorporating the metal oxide nanoparticles within the hydrogel matrix. Characterization of the nanocomposites is performed using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Incorporating metal oxide nanoparticles induces noticeable changes in the FTIR spectra, confirming interactions between the nanoparticles and the hydrogel matrix. The antibacterial activity of the nanocomposites is evaluated against different bacteria, and the results demonstrate significant inhibitory effects, especially for MgO- and ZnO-hydrogel nanocomposites against P. mirabilis, S. aureus, P. aeruginosa, and C. albicans, highlighting their potential as antimicrobial agents. The 5 wt% of MgO, ZnO, TiO2 and CaO inside PEO/PEC-co-AAm hydrogel nanocomposites exhibited significant inhibitory effects, with a respective optical density at λ = 600 nm (OD600) values of 0.896 nm, 0.986 nm, 1.250 nm, and 1.980 nm compared to the control and hydrogel alone (OD600 values of 2.88 nm and 2.72 nm, respectively). The antibacterial activity of the (MgO-, ZnO-, TiO2-, and CaO-hydrogel) was enhanced, resulting in the inhibition of S. aureus growth by approximately 68.89 %, 65.86 %, 56.25 %, and 31.94 %, respectively. Incorporating nanoparticles into a hydrogel matrix introduces novelty by preventing their aggregation and synergistically enhancing the antibacterial activity. The hydrogel's porous structure and water content facilitate the physical entrapment of bacteria and promote proximity to the metal oxide nanoparticles, resulting in improved interaction and antimicrobial effectiveness. Moreover, the hydrogel ability to absorb and entrap resistance compounds released by bacteria, coupled with its ability to supply water for the generation of reactive oxygen species, further contributes to its antimicrobial properties.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Óxido de Zinco , Hidrogéis/farmacologia , Hidrogéis/química , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Óxido de Magnésio/farmacologia , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Óxidos/farmacologia , Materiais Biocompatíveis/farmacologia , Nanopartículas Metálicas/química , Bactérias , Água/farmacologia , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Nanocompostos/química
15.
RSC Adv ; 13(46): 32223-32265, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37928851

RESUMO

The optical features of gold nanorods (GNR) may be precisely controlled by manipulating their size, shape, and aspect ratio. This review explores the impact of these parameters on the optical tuning of (GNR). By altering the experimental conditions, like the addition of silver ions during the seed-mediated growth process, the aspect ratio of (GNR) may be regulated. The shape is trans from spherical to rod-like structures resulting in noticeable changes in the nanoparticles surface plasmons resonance (SPR) bands. The longitudinal SPR band, associated with electron oscillations along the long axis, exhibits a pronounced red shift into the (NIR) region as the aspect ratio increases. In contrast, the transverse SPR band remains relate unchanged. Using computational methods like the discrete dipole approximation (DDA) allows for analyzing absorption, scattering, and total extinction features of gold (G) nanoparticles. Studies have shown that increasing the aspect ratio enhances the scattering efficiency, indicating a higher scattering quantum yield (QY). These findings highlight the importance of size, shape, and aspect ratio in controlling the optical features of (GNR) providing valuable insights for various uses in nanophotonics and plasmonic-dependent fluorescence in cancer treatment and developing new photonic compound NRs.

16.
Sci Rep ; 13(1): 19289, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935757

RESUMO

Marine biofouling, undesirable growth of organisms on submerged surfaces, poses significant challenges in various industries and marine applications. The development of environmentally safe antifouling coatings employing nano-MnO2/cellulose nanofiber (CNF) composite with bisphenol A epoxy diacrylate/glycidyl methacrylate (BED/GMA) irradiated by electron beam (T1) has been achieved in the current work. The physico-chemical characteristics of the fabricated coatings have been studied using Fourier transforms infrared spectroscopy, scanning electron microscope, water contact angle, and X-ray diffraction. The efficacy of T1 formulation and pure BED/GMA polymer (T2) in inhibiting biofouling formation was investigated in seawater of Alexandria Eastern Harbour by examining biofilm development morphologically and biochemically. In addition, regular analyses of seawater physicochemical parameters were conducted monthly throughout study. Results provide valuable information on coating performance as well as the complex interactions between coatings, biofilms, and environmental factors. The T1 formulation exhibited strong anti-fouling and anticorrosion properties over 2 months. However, after four months of immersion, all coated steel surfaces, including T1, T2, and T0, were heavily covered with macro-fouling, including tubeworms, barnacles, and algae. Biochemical analysis of extracellular polymeric substances (EPS) showed statistically significant variations in carbohydrates content between the coated surfaces. The T1 formulation showed decreased protein and carbohydrate content in EPS fractions after 14 days of immersion indicating less biofouling. Moreover, elemental analysis showed that carbon, oxygen, and iron were the predominant elements in the biofilm. Other elements such as sodium, silicon, chloride, and calcium were in lower concentrations. T2 and T0 surfaces revealed higher calcium levels and the appearance of sulphur peaks if compared with T1 surface. Diatoms and bacteria were detected on T1, T2, and T0 surfaces. The observed warming of seawater and nutrient-rich conditions were found to promote the growth of fouling organisms, emphasizing the importance of considering environmental factors in biofouling management strategies.


Assuntos
Incrustação Biológica , Nanofibras , Incrustação Biológica/prevenção & controle , Celulose , Cálcio , Elétrons , Biofilmes , Propriedades de Superfície
17.
RSC Adv ; 13(50): 35251-35291, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38053691

RESUMO

Nanocomposite hydrogel biomaterials represent an exciting Frontier in biomedicine, offering solutions to longstanding challenges. These hydrogels are derived from various biopolymers, including fibrin, silk fibroin, collagen, keratin, gelatin, chitosan, hyaluronic acid, alginate, carrageenan, and cellulose. While these biopolymers possess inherent biocompatibility and renewability, they often suffer from poor mechanical properties and rapid degradation. Researchers have integrated biopolymers such as cellulose, starch, and chitosan into hydrogel matrices to overcome these limitations, resulting in nanocomposite hydrogels. These innovative materials exhibit enhanced mechanical strength, improved biocompatibility, and the ability to finely tune drug release profiles. The marriage of nanotechnology and hydrogel chemistry empowers precise control over these materials' physical and chemical properties, making them ideal for tissue engineering, drug delivery, wound healing, and biosensing applications. Recent advancements in the design, fabrication, and characterization of biopolymer-based nanocomposite hydrogels have showcased their potential to transform biomedicine. Researchers are employing strategic approaches for integrating biopolymer nanoparticles, exploring how nanoparticle properties impact hydrogel performance, and utilizing various characterization techniques to evaluate structure and functionality. Moreover, the diverse biomedical applications of these nanocomposite hydrogels hold promise for improving patient outcomes and addressing unmet clinical needs.

18.
Int J Biol Macromol ; 252: 126467, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37640186

RESUMO

The study addresses the potential negative impacts of climate change on water resources, specifically irrigation water for crops. The radiation technique produces the biomaterial hydrogel as a soil conditioner by polymerizing hydroxy ethyl cellulose/acrylamide (HEC/AAm) at various irradiation doses and copolymer concentrations. A maximum swelling of 23.4 g/g is attained by (HEC/PAAm) hydrogel at 1/7.5 ratio, prepared by 10 kGy gamma irradiation. The study introduces a new class of ultra-absorbent hydrogel (UAH) to address the low swelling limitation for soil conditioner applications. The alkaline hydrolysis treatments with NaOH, LiOH, and KOH enhance the water absorbency of (HEC/PAAm) hydrogel, with the highest capacity of 1220 g/g achieved by the KOH treatment, surpassing NaOH (622 g/g) and LiOH (540 g/g). The cumulative release of fertilizers from the UAH sample shows a slow and controlled release behavior. Urea takes 22 days to reach 100 % release. The UAH demonstrates water retention for 28 days, improving the growth of Zea mays L. at drought stress levels of 0 %, 25 %, 50 %, and 100 %, revealing an increase in shoot length by 16 %, 19 %, 24 %, and 20 %, respectively. Also, UAH increased the contents of chlorophyll a, b, a + b, and carotenoid on maize plant leaves compared to the control sample.


Assuntos
Fertilizantes , Hidrogéis , Fertilizantes/análise , Zea mays , Secas , Clorofila A , Hidróxido de Sódio , Solo , Água
19.
Discov Oncol ; 14(1): 138, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37493814

RESUMO

The use of 5-fluorouracil (5-FU) is associated with multifaceted challenges and poor pharmacokinetics. Accordingly, our study was designed to prepare 5-FU nanogel as a new form of the colon cancer chemotherapeutic drug 5-FU using polyacrylic acid and gelatin hybrid nanogel as efficient drug carriers. Alongside the in vivo chemotherapeutic evaluation, the anti-proliferative and anti-apoptotic efficacy were carried out for 5-FU nanogel against 1,2-dimethylhydrazine (DMH, 20 mg/kg) and γ-radiation (4 Gy)-prompted colon dysplasia in rats compared to 5-FU. The morphology and size of 5-FU nanogel were characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS) in addition to cytotoxicity assay. The expression of phosphoinositide-3-kinase (PI3K)/Akt, mammalian target of rapamycin (mTOR); Toll-like receptor2 (TLR2)/nuclear factor kappa B), adenosine monophosphate (AMP)-activated protein kinase (AMPK) and its downstream autophagy-related genes in addition to apoptotic markers were measured in colon tissues. Results: 5-FU nanogel reduced the levels of the TLR2/ NF-κß as well as the expression of PI3K/AKT/mTOR. Moreover, it promoted autophagy through the activation of the AMPK and its downstream targets which consequently augmented the intrinsic and extrinsic apoptotic pathways. Conclusion: Collectively, these data might strengthen the therapeutic potential of 5-FU nanogel which can be used as an antitumor product for colon cancer.

20.
Sci Rep ; 13(1): 7514, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160993

RESUMO

Blend nanocomposite film was prepared by loadings of irradiated ZnO in ratios of (5 wt%) inside the PVC/HDPE matrix using a hot-melt extruder technique. The physical and chemical properties of the irradiated and unirradiated ZnO samples are compared. The Vis-UV spectrum of ZnO shows an absorption peak at a wavelength of 373 nm that was slightly red-shifted to 375 nm for an irradiated sample of ZnO at a dose of 25 kGy due to the defect of crystal structure by the oxygen vacancy during gamma irradiations. This growth of the defect site leads to a decrease in energy gaps from 3.8 to 2.08 eV. AC conductivity of ZnO sample increased after the gamma irradiation process (25 kGy). The (PVC/HDPE)/ZnO nanocomposites were re-irradiated with γ rays at 25 kGy in the presence of four different media (silicon oil, sodium silicate, paraffin wax and water). FTIR and XRD were performed to monitor the changes in chemical composition. The new peak at 1723 cm-1 attributed to C=O groups was observed in irradiated (PVC/HDPE)ZnO samples at only sodium silicate and water media. This process induced new function groups on the surface of the (PVC/HDPE)/ZnO blend sample. This work aims to develop (PVC/HDPE)ZnO for oil/water separation. The highest oil adsorption capability was observed in samples functionalized by C=O groups based on the different tested oils. The results suggest that the surface characterization of the (PVC/HDPE)/ZnO can be modified to enhance the oil adsorption potential. Further, the gamma irradiation dose significantly enhanced the AC conductivity compared to the unirradiated sample. According to COMSOL Multiphysics, the irradiated sample (PVC/HDPE)ZnO in water shows perfect uniform electric field distribution in medium voltage cables (22.000 V).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA