Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33893238

RESUMO

Combining ferroelectricity with other properties such as visible light absorption or long-range magnetic order requires the discovery of new families of ferroelectric materials. Here, through the analysis of a high-throughput database of phonon band structures, we identify a structural family of anti-Ruddlesden-Popper phases [Formula: see text]O (A=Ca, Sr, Ba, Eu, X=Sb, P, As, Bi) showing ferroelectric and antiferroelectric behaviors. The discovered ferroelectrics belong to the new class of hyperferroelectrics that polarize even under open-circuit boundary conditions. The polar distortion involves the movement of O anions against apical A cations and is driven by geometric effects resulting from internal chemical strains. Within this structural family, we show that [Formula: see text]O combines coupled ferromagnetic and ferroelectric order at the same atomic site, a very rare occurrence in materials physics.

2.
Nat Mater ; 19(11): 1182-1187, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32778815

RESUMO

Controlling phase transitions in transition metal oxides remains a central feature of both technological and fundamental scientific relevance. A well-known example is the metal-insulator transition, which has been shown to be highly controllable. However, the length scale over which these phases can be established is not yet well understood. To gain insight into this issue, we atomically engineered an artificially phase-separated system through fabricating epitaxial superlattices that consist of SmNiO3 and NdNiO3, two materials that undergo a metal-to-insulator transition at different temperatures. We demonstrate that the length scale of the interfacial coupling between metal and insulator phases is determined by balancing the energy cost of the boundary between a metal and an insulator and the bulk phase energies. Notably, we show that the length scale of this effect exceeds that of the physical coupling of structural motifs, which introduces a new framework for interface-engineering properties at temperatures against the bulk energetics.

3.
Proc Natl Acad Sci U S A ; 115(38): 9515-9520, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30185557

RESUMO

In transition metal perovskites ABO3, the physical properties are largely driven by the rotations of the BO6 octahedra, which can be tuned in thin films through strain and dimensionality control. However, both approaches have fundamental and practical limitations due to discrete and indirect variations in bond angles, bond lengths, and film symmetry by using commercially available substrates. Here, we introduce modulation tilt control as an approach to tune the ground state of perovskite oxide thin films by acting explicitly on the oxygen octahedra rotation modes-that is, directly on the bond angles. By intercalating the prototype SmNiO3 target material with a tilt-control layer, we cause the system to change the natural amplitude of a given rotation mode without affecting the interactions. In contrast to strain and dimensionality engineering, our method enables a continuous fine-tuning of the materials' properties. This is achieved through two independent adjustable parameters: the nature of the tilt-control material (through its symmetry, elastic constants, and oxygen rotation angles), and the relative thicknesses of the target and tilt-control materials. As a result, a magnetic and electronic phase diagram can be obtained, normally only accessible by A-site element substitution, within the single SmNiO3 compound. With this unique approach, we successfully adjusted the metal-insulator transition (MIT) to room temperature to fulfill the desired conditions for optical switching applications.

4.
Phys Rev Lett ; 125(15): 157601, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33095620

RESUMO

The competition between polar distortions and BO_{6} octahedra rotations is well known to be critical in explaining the ground state of various ABO_{3} perovskites. Here, we show from first-principles calculations that a similar competition between interlayer rumpling and rotations is playing a key role in layered Ruddlesden-Popper (RP) perovskites. This competition explains the suppression of oxygen octahedra rotations and hybrid improper ferroelectricity in A_{3}B_{2}O_{7} compounds with rare-earth ions in the rocksalt layer and also appears relevant to other phenomena like negative thermal expansion and the dimensionality determined band gap in RP systems. Moreover, we highlight that RP perovskites offer more flexibility than ABO_{3} perovskites in controlling such a competition and four distinct strategies are proposed to tune it. These strategies are shown to be promising for designing new multiferroics. They are generic and might also be exploited for tuning negative thermal expansion and band gap.

5.
J Chem Phys ; 152(12): 124102, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32241118

RESUMO

abinit is probably the first electronic-structure package to have been released under an open-source license about 20 years ago. It implements density functional theory, density-functional perturbation theory (DFPT), many-body perturbation theory (GW approximation and Bethe-Salpeter equation), and more specific or advanced formalisms, such as dynamical mean-field theory (DMFT) and the "temperature-dependent effective potential" approach for anharmonic effects. Relying on planewaves for the representation of wavefunctions, density, and other space-dependent quantities, with pseudopotentials or projector-augmented waves (PAWs), it is well suited for the study of periodic materials, although nanostructures and molecules can be treated with the supercell technique. The present article starts with a brief description of the project, a summary of the theories upon which abinit relies, and a list of the associated capabilities. It then focuses on selected capabilities that might not be present in the majority of electronic structure packages either among planewave codes or, in general, treatment of strongly correlated materials using DMFT; materials under finite electric fields; properties at nuclei (electric field gradient, Mössbauer shifts, and orbital magnetization); positron annihilation; Raman intensities and electro-optic effect; and DFPT calculations of response to strain perturbation (elastic constants and piezoelectricity), spatial dispersion (flexoelectricity), electronic mobility, temperature dependence of the gap, and spin-magnetic-field perturbation. The abinit DFPT implementation is very general, including systems with van der Waals interaction or with noncollinear magnetism. Community projects are also described: generation of pseudopotential and PAW datasets, high-throughput calculations (databases of phonon band structure, second-harmonic generation, and GW computations of bandgaps), and the library libpaw. abinit has strong links with many other software projects that are briefly mentioned.

6.
Nature ; 534(7607): 331-2, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27306183
7.
Phys Rev Lett ; 116(5): 057602, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26894734

RESUMO

The Jahn-Teller distortion, by its very nature, is often at the heart of the various electronic properties displayed by perovskites and related materials. Despite the Jahn-Teller mode being nonpolar, we devise and demonstrate, in the present Letter, an electric field control of Jahn-Teller distortions in bulk perovskites. The electric field control is enabled through an anharmonic lattice mode coupling between the Jahn-Teller distortion and a polar mode. We confirm this coupling and quantify it through first-principles calculations. The coupling will always exist within the Pb2_{1}m space group, which is found to be the favored ground state for various perovskites under sufficient tensile epitaxial strain. Intriguingly, the calculations reveal that this mechanism is not only restricted to Jahn-Teller active systems, promising a general route to tune or induce novel electronic functionality in perovskites as a whole.

8.
Phys Rev Lett ; 114(13): 136601, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25884131

RESUMO

Thermoelectrics are promising for addressing energy issues but their exploitation is still hampered by low efficiencies. So far, much improvement has been achieved by reducing the thermal conductivity but less by maximizing the power factor. The latter imposes apparently conflicting requirements on the band structure: a narrow energy distribution and a low effective mass. Quantum confinement in nanostructures and the introduction of resonant states were suggested as possible solutions to this paradox, but with limited success. Here, we propose an original approach to fulfill both requirements in bulk semiconductors. It exploits the highly directional character of some orbitals to engineer the band structure and produce a type of low-dimensional transport similar to that targeted in nanostructures, while retaining isotropic properties. Using first-principle calculations, the theoretical concept is demonstrated in Fe2YZ Heusler compounds, yielding power factors 4 to 5 times larger than in classical thermoelectrics at room temperature. Our findings are totally generic and rationalize the search of alternative compounds with similar behavior. Beyond thermoelectricity, these might be relevant also in the context of electronic, superconducting, or photovoltaic applications.

9.
Nature ; 515(7527): 348-50, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25409822
10.
Nature ; 452(7188): 732-6, 2008 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-18401406

RESUMO

Ferroelectric thin films and superlattices are currently the subject of intensive research because of the interest they raise for technological applications and also because their properties are of fundamental scientific importance. Ferroelectric superlattices allow the tuning of the ferroelectric properties while maintaining perfect crystal structure and a coherent strain, even throughout relatively thick samples. This tuning is achieved in practice by adjusting both the strain, to enhance the polarization, and the composition, to interpolate between the properties of the combined compounds. Here we show that superlattices with very short periods possess a new form of interface coupling, based on rotational distortions, which gives rise to 'improper' ferroelectricity. These observations suggest an approach, based on interface engineering, to produce artificial materials with unique properties. By considering ferroelectric/paraelectric PbTiO3/SrTiO3 multilayers, we first show from first principles that the ground-state of the system is not purely ferroelectric but also primarily involves antiferrodistortive rotations of the oxygen atoms in a way compatible with improper ferroelectricity. We then demonstrate experimentally that, in contrast to pure PbTiO3 and SrTiO3 compounds, the multilayer system indeed behaves like a prototypical improper ferroelectric and exhibits a very large dielectric constant of epsilon(r) approximately 600, which is also fairly temperature-independent. This behaviour, of practical interest for technological applications, is distinct from that of normal ferroelectrics, for which the dielectric constant is typically large but strongly evolves around the phase transition temperature and also differs from that of previously known improper ferroelectrics that exhibit a temperature-independent but small dielectric constant only.

11.
Nat Commun ; 14(1): 1629, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36959197

RESUMO

Out-of-plane polar domain structures have recently been discovered in strained and twisted bilayers of inversion symmetry broken systems such as hexagonal boron nitride. Here we show that this symmetry breaking also gives rise to an in-plane component of polarization, and the form of the total polarization is determined purely from symmetry considerations. The in-plane component of the polarization makes the polar domains in strained and twisted bilayers topologically non-trivial, forming a network of merons and antimerons (half-skyrmions and half-antiskyrmions). For twisted systems, the merons are of Bloch type whereas for strained systems they are of Néel type. We propose that the polar domains in strained or twisted bilayers may serve as a platform for exploring topological physics in layered materials and discuss how control over topological phases and phase transitions may be achieved in such systems.

12.
PNAS Nexus ; 2(5): pgad108, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37181050

RESUMO

Perovskite nickelates RNiO3 (R = rare-earth ion) exhibit complex rare-earth ion dependent phase diagram and high tunability of various appealing properties. Here, combining first- and finite-temperature second-principles calculations, we explicitly demonstrate that the superior merits of the interplay among lattice, electron, and spin degrees of freedom can be passed to RNiO2, which recently gained significant interest as superconductors. We unveil that decreasing the rare-earth size directly modulates the structural, electronic, and magnetic properties and naturally groups infinite-layer nickelates into two categories in terms of the Fermi surface and magnetic dimensionality: compounds with large rare-earth sizes (La, Pr) closely resemble the key properties of CaCuO2, showing quasi-two-dimensional (2D) antiferromagnetic (AFM) correlations and strongly localized dx2-y2 orbitals around the Fermi level; the compounds with small rare-earth sizes (Nd-Lu) are highly analogous to ferropnictides, showing three-dimensional (3D) magnetic dimensionality and strong kz dispersion of d3z2-r2 electrons at the Fermi level. Additionally, we highlight that RNiO2 with R = Nd-Lu exhibit on cooling a structural transition with the appearance of oxygen rotation motion, which is softened by the reduction of rare-earth size and enhanced by spin-rotation couplings. The rare-earth control of kz dispersion and structural phase transition might be the key factors differentiating the distinct upper critical field and resistivity in different compounds. The established original phase diagram summarizing the temperature and rare-earth controlled structural, electronic, and magnetic transitions in RNiO2 compounds provides rich structural and chemical flexibility to tailor the superconducting property.

13.
Phys Rev Lett ; 108(10): 107003, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22463443

RESUMO

We report first-principles characterization of the structural and electronic properties of (SrTiO3)5/(SrRuO3)1 superlattices. We show that the system exhibits a spin-polarized two-dimensional electron gas, extremely confined to the 4d orbitals of Ru in the SrRuO3 layer. Every interface in the superlattice behaves as a minority-spin half-metal ferromagnet, with a magnetic moment of µ=2.0µ(B)/SrRuO3 unit. The shape of the electronic density of states, half-metallicity, and magnetism are explained in terms of a simplified tight-binding model, considering only the t(2g) orbitals plus (i) the bidimensionality of the system and (ii) strong electron correlations.

14.
ACS Appl Mater Interfaces ; 14(22): 25722-25730, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35618661

RESUMO

The potential of Fe2TiSn full-Heusler compounds for thermoelectric applications has been suggested theoretically, but not yet proven experimentally, due to the difficulty in obtaining reproducible, homogeneous, phase-pure and defect-free samples. In this work, we studied Fe2TiSn1-xSbx polycrystals (x from 0 to 0.6), fabricated by high-frequency melting and long-time high-temperature annealing. We obtained fairly good phase purity, a homogeneous microstructure, and good matrix stoichiometry. Although the intrinsic p-type transport behavior is dominant, n-type charge compensation by Sb-doping is demonstrated. Calculations of the formation energy of defects and electronic properties carried out using the density functional theory formalism reveal that charged iron vacancies VFe2- are the dominant defects responsible for the intrinsic p-type doping of Fe2TiSn under all types of (except Fe-rich) growing conditions. In addition, Sb substitutions at the Sn site give rise either to SbSn, SbSn1+, which are responsible for n-type doping and magnetism (SbSn) or to magnetic SbSn1-, which act as additional p-type dopants. Our experimental data highlight good thermoelectric properties close to room temperature, with Seebeck coefficients up to 56 µV/K in the x = 0.2 sample and power factors up to 4.8 × 10-4 W m-1 K-2 in the x = 0.1 sample. Our calculations indicate the appearance of a pseudogap under Ti-rich conditions and a large Sb-doping level, possibly improving further the thermoelectric properties.

15.
Phys Rev Lett ; 106(16): 166807, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21599400

RESUMO

We describe the intrinsic mechanism of 2-dimensional electron confinement at the n-type SrTiO3/LaAlO3 interface as a function of the sheet carrier density n(s) via advanced first-principles calculations. Electrons localize spontaneously in Ti 3d(xy) levels within a thin (≲2 nm) interface-adjacent SrTiO3 region for n(s) lower than a threshold value n(c)∼10(14) cm(-2). For n(s)>n(c) a portion of charge flows into Ti 3d(xz)-d(yz) levels extending farther from the interface. This intrinsic confinement can be attributed to the interface-induced symmetry breaking and localized nature of Ti 3d t(2g) states. The sheet carrier density directly controls the binding energy and the spatial extension of the conductive region. A direct, quantitative relation of these quantities with n(s) is provided.

16.
J Phys Chem Lett ; 12(17): 4227-4239, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33900763

RESUMO

Lead (Pb) halide perovskites have achieved great success in recent years because of their excellent optoelectronic properties, which is largely attributed to the lone-pair s orbital-derived antibonding states at the valence band edge. Guided by the key band-edge orbital character, a series of ns2-containing (i.e., Sn2+, Sb3+, and Bi3+) Pb-free perovskite alternatives have been explored as potential photovoltaic candidates. On the other hand, based on the band-edge orbital components (i.e., M2+ s and p/X- p orbitals), a series of strategies have been proposed to optimize their optoelectronic properties by modifying the atomic orbitals and orbital interactions. Therefore, understanding the band-edge electronic features from the recently reported halide perovskites is essential for future material design and device optimization. This Perspective first attempts to establish the band-edge orbital-property relationship using a chemically intuitive approach and then rationalizes their superior properties and explains the trends in electronic properties. We hope that this Perspective will provide atomic-level guidance and insights toward the rational design of perovskite semiconductors with outstanding optoelectronic properties.

17.
Phys Rev Lett ; 104(3): 037601, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-20366683

RESUMO

Using first-principles density functional calculations, we show that ferroelectricity can be induced in simple alkaline-earth-metal binary oxides such as barium oxide (BaO) using appropriate epitaxial strains. Going beyond the fundamental discovery, we highlight that the functional properties (polarization, dielectric constant, and piezoelectric response) of such strained binary oxides are comparable in magnitude to those of typical ferroelectric perovskite oxides, making them of direct interest for applications. Finally, we show that magnetic binary oxides such as EuO, with the same rocksalt structure, behave similarly to the alkaline-earth-metal oxides, suggesting a route to new multiferroics combining ferroelectric and magnetic properties.

18.
Nanoscale ; 12(8): 5067-5074, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32068214

RESUMO

Tuning the half-metallicity of low-dimensional materials using an electric field is particularly appealing for spintronic applications but typically requires an ultra-high field, hampering practical applications. Interface engineering has been suggested as an alternative practical means to overcome this limitation and control the metal-to-half-metal transition. Here, we show from first-principles calculations that the polarization switching at the interface of semi-hydrogenated graphene (i.e., graphone) and a ferroelectric PbTiO3 layer can reversibly tune a metal to half-metal transition in graphone. Using a simple Hubbard model, this is rationalized using interface atomic orbital hybridization, which also reveals the origin of the high-quality screening of metallic graphone, preserving bulk-like stable ferroelectric polarization in the PbTiO3 film down to a thickness of two unit cells. These findings do not only open a new perspective on engineering half-metallicity at the interface of two-dimensional materials and ferroelectrics, but also identify graphone as a powerful atomically thin electrode, which holds great promise for the design of ultrafast and high integration density information-storage devices.

19.
RSC Adv ; 10(52): 31261-31270, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-35520684

RESUMO

Epitaxial integration of transition-metal oxides with silicon brings a variety of functional properties to the well-established platform of electronic components. In this process, deoxidation and passivation of the silicon surface are one of the most important steps, which in our study were controlled by an ultra-thin layer of SrO and monitored by using transmission electron microscopy (TEM), electron energy-loss spectroscopy (EELS), synchrotron X-ray diffraction (XRD) and reflection high energy electron diffraction (RHEED) methods. Results revealed that an insufficient amount of SrO leads to uneven deoxidation of the silicon surface i.e. formation of pits and islands, whereas the composition of the as-formed heterostructure gradually changes from strontium silicide at the interface with silicon, to strontium silicate and SrO in the topmost layer. Epitaxial ordering of SrO, occurring simultaneously with silicon deoxidation, was observed. RHEED analysis has identified that SrO is epitaxially aligned with the (001) Si substrate both with SrO (001) and SrO (111) out-of-plane directions. This observation was discussed from the point of view of SrO desorption, SrO-induced deoxidation of the Si (001) surface and other interfacial reactions as well as structural ordering of deposited SrO. Results of the study present an important milestone in understanding subsequent epitaxial integration of functional oxides with silicon using SrO.

20.
Sci Rep ; 8(1): 12448, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30127515

RESUMO

Multiferroic heterostructures combining ferromagnetic and ferroelectric layers are promising for applications in novel spintronic devices, such as memories with electrical writing and magnetic reading, assuming their magnetoelectric coupling (MEC) is strong enough. For conventional magnetic metal/ferroelectric heterostructures, however, the change of interfacial magnetic moment upon reversal of the electric polarization is often very weak. Here, by using first principles calculations, we demonstrate a new pathway towards a strong MEC at the interface between the semi-hydrogenated graphene (also called graphone) and ferroelectric PbTiO3. By reversing the polarization of PbTiO3, the magnetization of graphone can be electrically switched on and off through the change of carbon-oxygen bonding at the interface. Furthermore, a ferroelectric polarization can be preserved down to ultrathin PbTiO3 layers less than one nanometer due to an enhancement of the polarization at the interface. The predicted strong magnetoelectric effect in the ultimately thin graphone/ferroelectric layers opens a new opportunity for the electric control of magnetism in high-density devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA