RESUMO
Rationale: Intravenous plasma-purified alpha-1 antitrypsin (IV-AAT) has been used as therapy for alpha-1 antitrypsin deficiency (AATD) since 1987. Previous trials (RAPID and RAPID-OLE) demonstrated efficacy in preserving computed tomography of lung density but no effect on FEV1. This observational study evaluated 615 people with severe AATD from three countries with socialized health care (Ireland, Switzerland, and Austria), where access to standard medical care was equal but access to IV-AAT was not. Objectives: To assess the real-world longitudinal effects of IV-AAT. Methods: Pulmonary function and mortality data were utilized to perform longitudinal analyses on registry participants with severe AATD. Measurements and Main Results: IV-AAT confers a survival benefit in severe AATD (P < 0.001). We uncovered two distinct AATD phenotypes based on an initial respiratory diagnosis: lung index and non-lung index. Lung indexes demonstrated a more rapid FEV1 decline between the ages of 20 and 50 and subsequently entered a plateau phase of minimal decline from 50 onward. Consequentially, IV-AAT had no effect on FEV1 decline, except in patients with a Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage 2 lung index. Conclusions: This real-world study demonstrates a survival advantage from IV-AAT. This improved survival is largely decoupled from FEV1 decline. The observation that patients with severe AATD fall into two major phenotypes has implications for clinical trial design where FEV1 is a primary endpoint. Recruits into trials are typically older lung indexes entering the plateau phase and, therefore, unlikely to show spirometric benefits. IV-AAT attenuates spirometric decline in lung indexes in GOLD stage 2, a spirometric group commonly outside current IV-AAT commencement recommendations.
Assuntos
Doença Pulmonar Obstrutiva Crônica , Deficiência de alfa 1-Antitripsina , Adulto , Humanos , Pessoa de Meia-Idade , Adulto Jovem , alfa 1-Antitripsina/uso terapêutico , alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/complicações , Deficiência de alfa 1-Antitripsina/diagnóstico , Deficiência de alfa 1-Antitripsina/tratamento farmacológico , Pulmão , Fenótipo , Sistema de RegistrosRESUMO
Rationale: In addition to rare genetic variants and the MUC5B locus, common genetic variants contribute to idiopathic pulmonary fibrosis (IPF) risk. The predictive power of common variants outside the MUC5B locus for IPF and interstitial lung abnormalities (ILAs) is unknown. Objectives: We tested the predictive value of IPF polygenic risk scores (PRSs) with and without the MUC5B region on IPF, ILA, and ILA progression. Methods: We developed PRSs that included (PRS-M5B) and excluded (PRS-NO-M5B) the MUC5B region (500-kb window around rs35705950-T) using an IPF genome-wide association study. We assessed PRS associations with area under the receiver operating characteristic curve (AUC) metrics for IPF, ILA, and ILA progression. Measurements and Main Results: We included 14,650 participants (1,970 IPF; 1,068 ILA) from six multi-ancestry population-based and case-control cohorts. In cases excluded from genome-wide association study, the PRS-M5B (odds ratio [OR] per SD of the score, 3.1; P = 7.1 × 10-95) and PRS-NO-M5B (OR per SD, 2.8; P = 2.5 × 10-87) were associated with IPF. Participants in the top PRS-NO-M5B quintile had â¼sevenfold odds for IPF compared with those in the first quintile. A clinical model predicted IPF (AUC, 0.61); rs35705950-T and PRS-NO-M5B demonstrated higher AUCs (0.73 and 0.7, respectively), and adding both genetic predictors to a clinical model yielded the highest performance (AUC, 0.81). The PRS-NO-M5B was associated with ILA (OR, 1.25) and ILA progression (OR, 1.16) in European ancestry participants. Conclusions: A common genetic variant risk score complements the MUC5B variant to identify individuals at high risk of interstitial lung abnormalities and pulmonary fibrosis.
Assuntos
Estudo de Associação Genômica Ampla , Fibrose Pulmonar Idiopática , Humanos , Fibrose Pulmonar Idiopática/genética , Fatores de Risco , Pulmão , Mucina-5B/genética , Predisposição Genética para DoençaRESUMO
α1-anti-trypsin (A1AT), encoded by SERPINA1, is a neutrophil elastase inhibitor that controls the inflammatory response in the lung. Severe A1AT deficiency increases risk for Chronic Obstructive Pulmonary Disease (COPD), however, the role of A1AT in COPD in non-deficient individuals is not well known. We identify a 2.1-fold increase (p = 2.5x10-6) in the use of a distal poly-adenylation site in primary lung tissue RNA-seq in 82 COPD cases when compared to 64 controls and replicate this in an independent study of 376 COPD and 267 controls. This alternative polyadenylation event involves two sites, a proximal and distal site, 61 and 1683 nucleotides downstream of the A1AT stop codon. To characterize this event, we measured the distal ratio in human primary tissue short read RNA-seq data and corroborated our results with long read RNA-seq data. Integrating these results with 3' end RNA-seq and nanoluciferase reporter assay experiments we show that use of the distal site yields mRNA transcripts with over 50-fold decreased translation efficiency and A1AT expression. We identified seven RNA binding proteins using enhanced CrossLinking and ImmunoPrecipitation precipitation (eCLIP) with one or more binding sites in the SERPINA1 3' UTR. We combined these data with measurements of the distal ratio in shRNA knockdown experiments, nuclear and cytoplasmic fractionation, and chemical RNA structure probing. We identify Quaking Homolog (QKI) as a modulator of SERPINA1 mRNA translation and confirm the role of QKI in SERPINA1 translation with luciferase reporter assays. Analysis of single-cell RNA-seq showed differences in the distribution of the SERPINA1 distal ratio among hepatocytes, macrophages, αß-Tcells and plasma cells in the liver. Alveolar Type 1,2, dendritic cells and macrophages also vary in their distal ratio in the lung. Our work reveals a complex post-transcriptional mechanism that regulates alternative polyadenylation and A1AT expression in COPD.
Assuntos
Pulmão/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , alfa 1-Antitripsina/genética , Linhagem Celular , Códon de Terminação/genética , Regulação da Expressão Gênica/genética , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Pulmão/patologia , Macrófagos/metabolismo , Poliadenilação/genética , Proteínas Secretadas Inibidoras de Proteinases/genética , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , RNA-Seq , Análise de Célula Única , Linfócitos T/metabolismoRESUMO
BACKGROUND: Asthma and chronic obstructive pulmonary disease (COPD) have distinct and overlapping genetic and clinical features. OBJECTIVE: We sought to test the hypothesis that polygenic risk scores (PRSs) for asthma (PRSAsthma) and spirometry (FEV1 and FEV1/forced vital capacity; PRSspiro) would demonstrate differential associations with asthma, COPD, and asthma-COPD overlap (ACO). METHODS: We developed and tested 2 asthma PRSs and applied the higher performing PRSAsthma and a previously published PRSspiro to research (Genetic Epidemiology of COPD study and Childhood Asthma Management Program, with spirometry) and electronic health record-based (Mass General Brigham Biobank and Genetic Epidemiology Research on Adult Health and Aging [GERA]) studies. We assessed the association of PRSs with COPD and asthma using modified random-effects and binary-effects meta-analyses, and ACO and asthma exacerbations in specific cohorts. Models were adjusted for confounders and genetic ancestry. RESULTS: In meta-analyses of 102,477 participants, the PRSAsthma (odds ratio [OR] per SD, 1.16 [95% CI, 1.14-1.19]) and PRSspiro (OR per SD, 1.19 [95% CI, 1.17-1.22]) both predicted asthma, whereas the PRSspiro predicted COPD (OR per SD, 1.25 [95% CI, 1.21-1.30]). However, results differed by cohort. The PRSspiro was not associated with COPD in GERA and Mass General Brigham Biobank. In the Genetic Epidemiology of COPD study, the PRSAsthma (OR per SD: Whites, 1.3; African Americans, 1.2) and PRSspiro (OR per SD: Whites, 2.2; African Americans, 1.6) were both associated with ACO. In GERA, the PRSAsthma was associated with asthma exacerbations (OR, 1.18) in Whites; the PRSspiro was associated with asthma exacerbations in White, LatinX, and East Asian participants. CONCLUSIONS: PRSs for asthma and spirometry are both associated with ACO and asthma exacerbations. Genetic prediction performance differs in research versus electronic health record-based cohorts.
Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Adulto , Humanos , Criança , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/genética , Asma/epidemiologia , Asma/genética , Capacidade Vital , Testes de Função Respiratória , Volume Expiratório ForçadoRESUMO
Rationale: Multiple studies have demonstrated an increased risk of chronic obstructive pulmonary disease (COPD) in heterozygous carriers of the AAT (alpha-1 antitrypsin) Z allele. However, it is not known if MZ subjects with COPD are phenotypically different from noncarriers (MM genotype) with COPD. Objectives: To assess if MZ subjects with COPD have different clinical features compared with MM subjects with COPD. Methods: Genotypes of SERPINA1 were ascertained by using whole-genome sequencing data in three independent studies. We compared outcomes between MM subjects with COPD and MZ subjects with COPD in each study and combined the results in a meta-analysis. We performed longitudinal and survival analyses to compare outcomes in MM and MZ subjects with COPD over time. Measurements and Main Results: We included 290 MZ subjects with COPD and 6,184 MM subjects with COPD across the three studies. MZ subjects had a lower FEV1% predicted and greater quantitative emphysema on chest computed tomography scans compared with MM subjects. In a meta-analysis, the FEV1 was 3.9% lower (95% confidence interval [CI], -6.55% to -1.26%) and emphysema (the percentage of lung attenuation areas <-950 HU) was 4.14% greater (95% CI, 1.44% to 6.84%) in MZ subjects. We found one gene, PGF (placental growth factor), to be differentially expressed in lung tissue from one study between MZ subjects and MM subjects. Conclusions: Carriers of the AAT Z allele (those who were MZ heterozygous) with COPD had lower lung function and more emphysema than MM subjects with COPD. Taken with the subtle differences in gene expression between the two groups, our findings suggest that MZ subjects represent an endotype of COPD.
Assuntos
Genótipo , Heterozigoto , Fenótipo , Doença Pulmonar Obstrutiva Crônica/genética , alfa 1-Antitripsina/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Marcadores Genéticos , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/mortalidade , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Testes de Função Respiratória , Análise de Sobrevida , Sequenciamento Completo do GenomaRESUMO
Rationale: The ability of peripheral blood biomarkers to assess chronic obstructive pulmonary disease (COPD) risk and progression is unknown. Genetics and gene expression may capture important aspects of COPD-related biology that predict disease activity. Objectives: Develop a transcriptional risk score (TRS) for COPD and assess the contribution of the TRS and a polygenic risk score (PRS) for disease susceptibility and progression. Methods: We randomly split 2,569 COPDGene (Genetic Epidemiology of COPD) participants with whole-blood RNA sequencing into training (n = 1,945) and testing (n = 624) samples and used 468 ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points) COPD cases with microarray data for replication. We developed a TRS using penalized regression (least absolute shrinkage and selection operator) to model FEV1/FVC and studied the predictive value of TRS for COPD (Global Initiative for Chronic Obstructive Lung Disease 2-4), prospective FEV1 change (ml/yr), and additional COPD-related traits. We adjusted for potential confounders, including age and smoking. We evaluated the predictive performance of the TRS in the context of a previously derived PRS and clinical factors. Measurements and Main Results: The TRS included 147 transcripts and was associated with COPD (odds ratio, 3.3; 95% confidence interval [CI], 2.4-4.5; P < 0.001), FEV1 change (ß, -17 ml/yr; 95% CI, -28 to -6.6; P = 0.002), and other COPD-related traits. In ECLIPSE cases, we replicated the association with FEV1 change (ß, -8.2; 95% CI, -15 to -1; P = 0.025) and the majority of other COPD-related traits. Models including PRS, TRS, and clinical factors were more predictive of COPD (area under the receiver operator characteristic curve, 0.84) and annualized FEV1 change compared with models with one risk score or clinical factors alone. Conclusions: Blood transcriptomics can improve prediction of COPD and lung function decline when added to a PRS and clinical risk factors.
Assuntos
Biomarcadores/sangue , Progressão da Doença , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Medição de Risco/métodos , Idoso , Feminino , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Herança Multifatorial , Razão de Chances , Fenótipo , Valor Preditivo dos Testes , Estudos Prospectivos , Fatores de Risco , Índice de Gravidade de Doença , Fatores de TranscriçãoRESUMO
RATIONALE: COPD can be assessed using multidimensional grading systems with components from three domains: pulmonary function tests, symptoms and systemic features. Clinically, measures may be used interchangeably, though it is not known if they share similar pathobiology. OBJECTIVE: To use RNA sequencing (RNA-seq) to determine if there is an overlap in the underlying biological mechanisms and consequences driving different components of the multidimensional grading systems. METHODS: Whole blood was collected for RNA-seq from current and former smokers in the Genetic Epidemiology of COPD study. We tested the overlap in gene expression and biological pathways associated with case-control status and quantitative COPD phenotypes within and between the three domains. RESULTS: In 2647 subjects, there were 3030 genes differentially expressed in any of the three domains or case-control status. There were five genes that overlapped between the three domains and case-control status, including G protein-coupled receptor 15(GPR15), sestrin 1 (SESN1) and interferon-induced guanylate-binding protein 1 (GBP1), which were associated with longitudinal decline in FEV1. The overlap between the three domains was enriched for pathways related to cellular components. CONCLUSIONS: We identified gene sets and pathways that overlap between 12 COPD-related phenotypes and case-control status. There were no pathways represented in the overlap between the three domains and case-control status, but we identified multiple genes that demonstrated a consistent pattern of expression across several of the phenotypes. Patterns of gene expression correlation were generally similar to the correlation of clinical phenotypes in the PFT and symptom domains but not the systemic features.
Assuntos
Doença Pulmonar Obstrutiva Crônica , Expressão Gênica , Homologia de Genes , Humanos , Fenótipo , Doença Pulmonar Obstrutiva Crônica/genética , Análise de Sequência de RNARESUMO
BACKGROUND: Interstitial lung abnormalities (ILA) are radiologic findings that may progress to idiopathic pulmonary fibrosis (IPF). Blood gene expression profiles can predict IPF mortality, but whether these same genes associate with ILA and ILA outcomes is unknown. This study evaluated if a previously described blood gene expression profile associated with IPF mortality is associated with ILA and all-cause mortality. METHODS: In COPDGene and ECLIPSE study participants with visual scoring of ILA and gene expression data, we evaluated the association of a previously described IPF mortality score with ILA and mortality. We also trained a new ILA score, derived using genes from the IPF score, in a subset of COPDGene. We tested the association with ILA and mortality on the remainder of COPDGene and ECLIPSE. RESULTS: In 1469 COPDGene (training n = 734; testing n = 735) and 571 ECLIPSE participants, the IPF score was not associated with ILA or mortality. However, an ILA score derived from IPF score genes was associated with ILA (meta-analysis of test datasets OR 1.4 [95% CI: 1.2-1.6]) and mortality (HR 1.25 [95% CI: 1.12-1.41]). Six of the 11 genes in the ILA score had discordant directions of effects compared to the IPF score. The ILA score partially mediated the effects of age on mortality (11.8% proportion mediated). CONCLUSIONS: An ILA gene expression score, derived from IPF mortality-associated genes, identified genes with concordant and discordant effects on IPF mortality and ILA. These results suggest shared, and unique biologic processes, amongst those with ILA, IPF, aging, and death.
Assuntos
Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Estudos de Coortes , Humanos , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/genética , Pulmão , Doenças Pulmonares Intersticiais/diagnóstico , Doenças Pulmonares Intersticiais/genética , Tomografia Computadorizada por Raios X , Transcriptoma/genéticaRESUMO
BACKGROUND: Chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) are characterized by shared exposures and clinical features, but distinct genetic and pathologic features exist. These features have not been well-studied using large-scale gene expression datasets. We hypothesized that there are divergent gene, pathway, and cellular signatures between COPD and IPF. METHODS: We performed RNA-sequencing on lung tissues from individuals with IPF (n = 231) and COPD (n = 377) compared to control (n = 267), defined as individuals with normal spirometry. We grouped the overlapping differential expression gene sets based on direction of expression and examined the resultant sets for genes of interest, pathway enrichment, and cell composition. Using gene set variation analysis, we validated the overlap group gene sets in independent COPD and IPF data sets. RESULTS: We found 5010 genes differentially expressed between COPD and control, and 11,454 genes differentially expressed between IPF and control (1% false discovery rate). 3846 genes overlapped between IPF and COPD. Several pathways were enriched for genes upregulated in COPD and downregulated in IPF; however, no pathways were enriched for genes downregulated in COPD and upregulated in IPF. There were many myeloid cell genes with increased expression in COPD but decreased in IPF. We found that the genes upregulated in COPD but downregulated in IPF were associated with lower lung function in the independent validation cohorts. CONCLUSIONS: We identified a divergent gene expression signature between COPD and IPF, with increased expression in COPD and decreased in IPF. This signature is associated with worse lung function in both COPD and IPF.
Assuntos
Fibrose Pulmonar Idiopática , Doença Pulmonar Obstrutiva Crônica , Humanos , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/genética , Análise de Sequência de RNA , Transcriptoma/genéticaRESUMO
BACKGROUND: Previous studies have established a higher prevalence of vitamin D deficiency in patients with COPD, but the relationship between vitamin D levels and COPD exacerbations remains controversial. In addition, the effect of vitamin D levels on imaging characteristics remains mostly unexplored. Using cross-sectional and longitudinal follow up data from the COPDGene Study, we assessed the association between vitamin D levels on respiratory symptoms, exacerbations, and imaging characteristics. We hypothesized that vitamin D deficiency will be associated with worse respiratory-related outcomes. METHODS: Current and former smokers between ages 45-80 were enrolled the COPDGene Study. Subjects completed questionnaires, spirometry, six-minute walk test, and chest computed tomography scans. A subset of subjects had measurement of serum concentration of 25-hydroxyvitamin D (25(OH)D). Vitamin D deficiency was defined as serum concentration less than 20 ng/mL. Longitudinal follow up was conducted via a web-based or telephone questionnaire. RESULTS: Vitamin D levels were measured on 1544 current and former smokers, of which 981 subjects had sufficient vitamin D levels and 563 subjects had vitamin D deficiency. Subjects with vitamin D deficiency were younger with increased likelihood of being African American, being current smokers, having a lower percent predicted FEV1, and having COPD. Vitamin D deficiency was associated with worse quality of life, increased dyspnea, decreased exercise tolerance, and increased frequency of severe exacerbations. Vitamin D deficiency was also associated with increased segmental airway wall thickness on chest CT scans. CONCLUSION: Vitamin D deficiency was associated with increased respiratory symptoms, decreased functional status, increased frequency of severe exacerbations, as well as airway wall thickening on chest CT scans. Further research is needed to determine the potential impact of vitamin D supplementation to improve disease outcomes.
Assuntos
Pulmão/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Fumantes , Deficiência de Vitamina D/epidemiologia , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/complicações , Qualidade de Vida , Testes de Função Respiratória , Índice de Gravidade de Doença , Espirometria , Inquéritos e Questionários , Estados Unidos/epidemiologia , Vitamina D/análogos & derivados , Vitamina D/sangue , Deficiência de Vitamina D/sangue , Deficiência de Vitamina D/complicações , Teste de CaminhadaAssuntos
COVID-19 , Síndrome do Desconforto Respiratório , Insuficiência Respiratória , COVID-19/complicações , Pressão Positiva Contínua nas Vias Aéreas , Humanos , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/terapia , Insuficiência Respiratória/etiologia , Insuficiência Respiratória/terapiaAssuntos
COVID-19/epidemiologia , Doenças Pulmonares Intersticiais/mortalidade , SARS-CoV-2 , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Causas de Morte/tendências , Comorbidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Estudos Retrospectivos , Taxa de Sobrevida/tendências , Estados Unidos/epidemiologiaRESUMO
Airway pressure release ventilation (APRV) is a protective mechanical ventilation mode for patients with acute respiratory distress syndrome (ARDS) that theoretically may reduce ventilator-induced lung injury (VILI) and ARDS-related mortality. However, there is no standard method to set and adjust the APRV mode shown to be optimal. Therefore, we performed a meta-regression analysis to evaluate how the four individual APRV settings impacted the outcome in these patients. Methods: Studies investigating the use of the APRV mode for ARDS patients were searched from electronic databases. We tested individual settings, including (1) high airway pressure (PHigh); (2) low airway pressure (PLow); (3) time at high airway pressure (THigh); and (4) time at low pressure (TLow) for association with PaO2/FiO2 ratio and ICU length of stay. Results: There was no significant difference in PaO2/FiO2 ratio between the groups in any of the four settings (PHigh difference -12.0 [95% CI -100.4, 86.4]; PLow difference 54.3 [95% CI -52.6, 161.1]; TLow difference -27.19 [95% CI -127.0, 72.6]; THigh difference -51.4 [95% CI -170.3, 67.5]). There was high heterogeneity across all parameters (PhHgh I2 = 99.46%, PLow I2 = 99.16%, TLow I2 = 99.31%, THigh I2 = 99.29%). Conclusions: None of the four individual APRV settings independently were associated with differences in outcome. A holistic approach, analyzing all settings in combination, may improve APRV efficacy since it is known that small differences in ventilator settings can significantly alter mortality. Future clinical trials should set and adjust APRV based on the best current scientific evidence available.
RESUMO
Rationale: Genetic variants and gene expression predict risk of chronic obstructive pulmonary disease (COPD), but their effect on COPD heterogeneity is unclear. Objectives: Define high-risk COPD subtypes using both genetics (polygenic risk score, PRS) and blood gene expression (transcriptional risk score, TRS) and assess differences in clinical and molecular characteristics. Methods: We defined high-risk groups based on PRS and TRS quantiles by maximizing differences in protein biomarkers in a COPDGene training set and identified these groups in COPDGene and ECLIPSE test sets. We tested multivariable associations of subgroups with clinical outcomes and compared protein-protein interaction networks and drug repurposing analyses between high-risk groups. Measurements and Main Results: We examined two high-risk omics-defined groups in non-overlapping test sets (n=1,133 NHW COPDGene, n=299 African American (AA) COPDGene, n=468 ECLIPSE). We defined "High activity" (low PRS/high TRS) and "severe risk" (high PRS/high TRS) subgroups. Participants in both subgroups had lower body-mass index (BMI), lower lung function, and alterations in metabolic, growth, and immune signaling processes compared to a low-risk (low PRS, low TRS) reference subgroup. "High activity" but not "severe risk" participants had greater prospective FEV 1 decline (COPDGene: -51 mL/year; ECLIPSE: - 40 mL/year) and their proteomic profiles were enriched in gene sets perturbed by treatment with 5-lipoxygenase inhibitors and angiotensin-converting enzyme (ACE) inhibitors. Conclusions: Concomitant use of polygenic and transcriptional risk scores identified clinical and molecular heterogeneity amongst high-risk individuals. Proteomic and drug repurposing analysis identified subtype-specific enrichment for therapies and suggest prior drug repurposing failures may be explained by patient selection.
RESUMO
Introduction: In the personalized risk quantification of chronic obstructive pulmonary disease (COPD), genome-wide association studies and polygenic risk scores (PRS) complement traditional risk factors, such as age and cigarette smoking. However, despite being at considerable levels of risk, some individuals do not develop COPD. Research on COPD resilience remains largely unexplored. Methods: We applied the previously published COPD PRS to whole genome sequencing data from non-Hispanic white and African American individuals in the COPDGene study. We defined genetic resilience as individuals unaffected by COPD with a polygenic risk score above the 90 th percentile. We defined risk-matched case individuals as those with COPD (i.e., FEV 1 /FVC < 0.70) and a PRS above the 90 th percentile. We defined low risk individuals without COPD (i.e., FEV 1 /FVC > 0.70) as a polygenic risk score below the 10 th percentile. We compared genetically resilient individuals to risk-matched individuals with COPD and low risk individuals by demographics, lung function, respiratory symptoms, co-morbidities, and chest CT scan measurements. We also performed survival analyses, differential expression analysis, and matching for sensitivity analyses. Results: We identified 211 resilient individuals without COPD, 605 genetic risk-matched individuals with COPD, and 527 low-risk individuals without COPD. Resilient individuals had higher FEV 1 % predicted and lower percent emphysema. In contrast, resilient individuals had higher airway wall thickness compared to low-risk unaffected individuals. While there was no difference in survival between low-risk and resilient individuals, resilient individuals had higher survival compared to risk matched cases. We also identified two genes that were differentially expressed between low-risk unaffected individuals and resilient individuals. Conclusion: Genetically resilient individuals had a reduced burden of COPD disease-related measures compared to risk-matched cases but had subtly increased measures compared to low-risk unaffected individuals. Further genetic studies will be needed to illuminate the underlying pathobiology of our observations.
RESUMO
INTRODUCTION: Alpha-1 antitrypsin deficiency occurs in individuals with deleterious genetic mutations on both chromosomes (maternal and paternal) in SERPINA1, the gene encoding the alpha-1 antitrypsin protein. There has been substantial progress in understanding the genetic variation that underlies the heterogeneous penetrance of lung disease in alpha-1 antitrypsin deficiency. AREAS COVERED: This review will cover SERPINA1 gene structure and genetic variation, population genetics, genome-wide genetic modifiers of lung disease, alternative mechanisms of disease, and emerging therapeutics - including gene and cell therapy - related to alpha-1 antitrypsin deficiency-associated lung disease. EXPERT OPINION: There remains ample opportunity to employ precision medicine in the diagnosis, prognosis, and therapy of alpha-1 antitrypsin deficiency-associated lung disease. In particular, a genome-wide association study and subsequent polygenic risk score is an important first step in identifying genome-wide genetic modifiers contributing to the variability of lung disease in severe alpha-1 antitrypsin deficiency.
Assuntos
Pneumopatias , Deficiência de alfa 1-Antitripsina , Estudo de Associação Genômica Ampla , Humanos , Pulmão , Pneumopatias/etiologia , Pneumopatias/genética , Medicina de Precisão , alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/diagnóstico , Deficiência de alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/terapiaRESUMO
Ventilator-induced lung injury (VILI) is a significant risk for patients with acute respiratory distress syndrome (ARDS). Management of the patient with ARDS is currently dominated by the use of low tidal volume mechanical ventilation, the presumption being that this mitigates overdistension (OD) injury to the remaining normal lung tissue. Evidence exists, however, that it may be more important to avoid cyclic recruitment and derecruitment (RD) of lung units, although the relative roles of OD and RD in VILI remain unclear. Forty pigs had a heterogeneous lung injury induced by Tween instillation and were randomized into four groups (n = 10 each) with higher (↑) or lower (↓) levels of OD and/or RD imposed using airway pressure release ventilation (APRV). OD was increased by setting inspiratory airway pressure to 40 cmH2O and lessened with 28 cmH2O. RD was attenuated using a short duration of expiration (â¼0.45 s) and increased with a longer duration (â¼1.0 s). All groups developed mild ARDS following injury. RD ↑ OD↑ caused the greatest degree of lung injury as determined by [Formula: see text]/[Formula: see text] ratio (226.1 ± 41.4 mmHg). RD ↑ OD↓ ([Formula: see text]/[Formula: see text]= 333.9 ± 33.1 mmHg) and RD ↓ OD↑ ([Formula: see text]/[Formula: see text] = 377.4 ± 43.2 mmHg) were both moderately injurious, whereas RD ↓ OD↓ ([Formula: see text]/[Formula: see text] = 472.3 ± 22.2 mmHg; P < 0.05) was least injurious. Both tidal volume and driving pressure were essentially identical in the RD ↑ OD↓ and RD ↓ OD↑ groups. We, therefore, conclude that considerations of expiratory time may be at least as important as pressure for safely ventilating the injured lung.NEW & NOTEWORTHY In a large animal model of ARDS, recruitment/derecruitment caused greater VILI than overdistension, whereas both mechanisms together caused severe lung damage. These findings suggest that eliminating cyclic recruitment and derecruitment during mechanical ventilation should be a preeminent management goal for the patient with ARDS. The airway pressure release ventilation (APRV) mode of mechanical ventilation can achieve this if delivered with an expiratory duration (TLow) that is brief enough to prevent derecruitment at end expiration.
Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Animais , Lesão Pulmonar Aguda/etiologia , Pulmão , Respiração Artificial/efeitos adversos , Síndrome do Desconforto Respiratório/terapia , Suínos , Volume de Ventilação Pulmonar , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologiaRESUMO
BACKGROUND: Most pulmonary conditions reduce FVC, but studies of patients with combined pulmonary fibrosis and emphysema demonstrate that reductions in FVC are less than expected when these two conditions coexist clinically. RESEARCH QUESTION: Do interstitial lung abnormalities (ILAs), chest CT imaging findings that may suggest an early stage of pulmonary fibrosis in individuals with undiagnosed disease, affect the association between emphysema and FVC? STUDY DESIGN AND METHODS: Measures of ILA and emphysema were available for 9,579 and 5,277 participants from phases 1 (2007-2011) and 2 (2012-2016) of the Genetic Epidemiology of Chronic Obstructive Pulmonary Disease Study (COPDGene), respectively. ILA were defined by Fleischner Society guidelines. Adjusted linear regression models were used to assess the associations and interactions among ILA, emphysema, measures of spirometry, and lung function. RESULTS: ILA were present in 528 (6%) and 580 (11%) of participants in phases 1 and 2 of COPDGene, respectively. ILA modified the association between emphysema and FVC (P < .0001 for interaction) in both phases. In phase 1, in those without ILA, a 5% increase in emphysema was associated with a reduction in FVC (-110 mL; 95% CI, -121 to -100 mL; P < .0001); however, in those with ILA, it was not (-11 mL; 95% CI, -53 to 31; P = .59). In contrast, no interaction was found between ILA and emphysema on total lung capacity or on diffusing capacity of carbon monoxide. INTERPRETATION: The presence of ILA attenuates the reduction in FVC associated with emphysema.