Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Monit Assess ; 193(7): 415, 2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34117931

RESUMO

The seasonal variability of the lateral flux of total alkalinity (TAlk) and dissolved inorganic carbon (DIC) of the tropical Hooghly estuary is analyzed in this work. In situ observations of water temperature, salinity, dissolved oxygen, TAlk, and pH were measured in four different stations of the Hooghly estuary. It was measured once every month during 2015-2016, and subsequently, DIC was estimated. A carbon budget was constructed to quantify carbon flows through the freshwater-marine continuum of the Hooghly estuary, and plausible impacts on the adjacent coastal ocean, the northern Bay of Bengal, were examined. The biogeochemical mass balance box model was used to compute the seasonal flow of carbon flux, and subsequently, the annual budgeting of lateral fluxes of TAlk and DIC to the adjacent coastal ocean was carried out. The net annual TAlk and DIC flux from the Hooghly estuary to the adjacent coastal ocean were 4.45 ± 1.90 × 1011 mol and 4.59 ± 1.70 × 1011 mol, respectively. The net annual DIC flux of the Hooghly estuary is about 30 to 60 times higher than surface area integrated air-water CO2 flux, which is an indication of promoting acidification in the adjacent coastal ocean. The present study indicates that the lateral DIC flux has increased substantially in the Hooghly estuary during the last two decades. The increase in inorganic carbon load in the Hooghly estuary due to the enhanced discharge of inorganic and organic matter load in the upper reaches of the estuary led to this increase in lateral DIC flux. The results strongly establish the need of having such regional studies for better understanding the estuarine carbon dynamics, and its role in controlling the adjacent coastal ocean dynamics.


Assuntos
Carbono , Rios , Baías , Carbono/análise , Monitoramento Ambiental , Estuários
2.
Toxicol Ind Health ; 34(12): 908-921, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30317941

RESUMO

BACKGROUND: Despite the available clinico-epidemiological evidence of heavy metal-associated respiratory health hazards among metal arc-welders, experimental confirmation of such an association is lacking. METHODS: In this study, we recruited 15 metal arc-welders and 10 referent workers without direct exposure. We assessed respiratory health through a questionnaire and spirometry; estimated manganese, nickel and cadmium levels in blood, urine and induced sputum; performed differential counts of sputum leucocytes and measured plasma malondialdehyde (MDA). We used atomic force and scanning electron microscopy to assess the physical property of the alveolar macrophages (AMs) obtained from induced sputum and analysed cell surface deposition of heavy metals using energy dispersion X-ray analysis (EDX). Sputum cellular DNA damage was assessed by DNA-laddering assay. RESULTS: There was a higher body burden of manganese and nickel in the metal arc-welders than the referents. Among major spirometric indices, only the forced mid-expiratory flow rates (FEF25-75) were reduced in the welders compared with the referents (63.4 ± 14.7 vs. 89.2 ± 26.7, p < 0.01); this reduction was associated with both heavy metal levels (ß: -41.8, 95% CI: -78.5% to -5.1%) and plasma MDA (-0.37; -0.68 to -0.06). In metal arc-welders, significant physical and morphological changes were observed in AMs through microscopic evaluation while EDX analyses demonstrated higher deposition of heavy metals on the AM cell surface than the referents. We also observed a higher degree of DNA damage in the sputum cells of the exposed workers than the referents. CONCLUSION: Heavy metal exposure-induced adverse respiratory effects among metal arc-welders are mediated through haematological and cytological interactions.


Assuntos
Poluentes Ocupacionais do Ar/efeitos adversos , Macrófagos Alveolares/efeitos dos fármacos , Metais Pesados/efeitos adversos , Exposição Ocupacional/efeitos adversos , Doenças Respiratórias/induzido quimicamente , Soldagem , Adulto , Poluentes Ocupacionais do Ar/análise , Cádmio/efeitos adversos , Cádmio/análise , Humanos , Leucócitos/citologia , Masculino , Malondialdeído/sangue , Manganês/efeitos adversos , Manganês/análise , Metais Pesados/análise , Pessoa de Meia-Idade , Níquel/efeitos adversos , Níquel/análise , Testes de Função Respiratória
3.
Sci Total Environ ; 752: 142190, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33207513

RESUMO

Mangrove, seagrass, and coral habitats often lie adjacent to each other in the tropics and subtropics. Lateral carbon fluxes and their consecutive effects on CO2 dynamics and air-water fluxes along the ecosystem continuum are often overlooked. We measured the partial pressure of CO2 in water and associated biogeochemical parameters with a high temporal resolution and estimated air-water CO2 fluxes along the ecosystem continuum. Their lateral fluxes were estimated by using a biogeochemical mass-balance model. The results showed that the waters surrounding mangrove, seagrass, and coral habitats acted as a strong, moderate, and weak source of atmospheric CO2, respectively. The mangrove zone acted as a net source for TAlk, DIC, and DOC, but as a net sink for POC. The contribution of riverine and mangrove-derived OM was substantially high in mangrove sediment, indicating that net transport of POC towards the coastal sea was suppressed by the sediment trapping function of mangroves. The seagrass zone acted as a net source of all carbon forms and TAlk, whereas the coral zone acted as a net sink of TAlk, DIC, and DOC. The lateral transport of carbon from mangroves and rivers offset atmospheric CO2 uptake in the seagrass zone. DOC degradation might increase DIC, and other biogeochemical processes facilitate the functioning of the coral zone as a DOC sink. However, as a result of DIC uptake by autotrophs, mainly in the coral zone, the whole ecosystem continuum was a net sink of DIC and atmospheric CO2 evasion was lowered. We conclude that lateral transport of riverine and mangrove-derived DIC, TAlk, and DOC affect CO2 dynamics and air-water fluxes in seagrass and coral ecosystems. Thus, studies of lateral carbon fluxes at local and regional scales can improve global carbon budget estimates.


Assuntos
Antozoários , Ecossistema , Animais , Carbono , Dióxido de Carbono , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA