Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Microb Pathog ; 188: 106548, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262493

RESUMO

A trinuclear Zn (II) complex, [(ZnL{N(CN)2})2Zn], termed complex 1 has been synthesized by the reaction of an aqueous solution of sodium dicyanamide to the methanolic solution of Zn (CH3COO)2, 2H2O and corresponding Schiff base (H2L) which is derived from 1:2 condensation of 1, 4 butane diamine with 3-ethoxy salicylaldehyde. Complex 1 is characterized by elemental analysis, IR, UV and Single X-ray diffraction study. Drug resistance is a growing global public health concern that has prompted researchers to look into advanced alternative treatment modalities. In this context, complex 1 has shown promising antibacterial and antibiofilm efficacy against gram-positive Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus strains. Complex 1 attenuated Staphylococcal biofilm formation by reducing several virulence factors including the formation of extracellular polysaccharide matrix, slime, haemolysin, staphyloxanthin, auto-aggregation, cell surface hydrophobicity, and motility. Notably, complex 1 mechanistically potentiated Reactive Oxygen Species (ROS) generation within the bacterial cells, leading to the damage of bacterial cell membrane followed by DNA leakage and thereby impeding the growth of Staphylococcus aureus. Furthermore, complex 1 significantly exhibited anticancer activity by reducing the growth of prostate adenocarcinoma cells. It obstructed the migration of cancer cells by potentiating apoptosis and arresting the cell cycle at the G2/M phase. In summary, complex 1 could act as a potent candidate for the generation of novel antibacterial, antibiofilm as well as anticancer treatment regimens for the management of drug-resistant biofilm-mediated Staphylococcus aureus infection and lethal prostate malignancy.


Assuntos
Cianamida , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Masculino , Humanos , Espécies Reativas de Oxigênio , Bases de Schiff/farmacologia , Antibacterianos/farmacologia , Staphylococcus aureus , Biofilmes , Bactérias , Infecções Estafilocócicas/microbiologia , Zinco/farmacologia , Testes de Sensibilidade Microbiana
2.
Environ Res ; 206: 112263, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-34695432

RESUMO

In an effort to become a global manufacturing giant, India has launched an ambitious "Make in India" campaign. In this article, we discussed the initiatives launched by Indian Government to create a sustainable economy, as well as opportunities for national and international start-up organisations to reinforce "Make in India" campaign. For the first time, we present an in-depth discussion of Green India policies and manufacturing sector challenges. The aim is to improve the manufacturing output of India and reduce dependence on foreign imports for which campaigns like "Atmanirbhar Bharat" which translates into "Self-Reliant-Green" India has also been started. Department of Science & Technology play a key role in establishing various programs such as infrastructure development, technological support, and green manufacturing programs all of which help to translate "discovery research" into "commercially viable technologies". It focuses specifically on "Startups", MSME's, young scientists, R&D labs and traditional manufacturing units that have little access to financial support but are an integral part of the Indian manufacturing ambit. The programs are interconnected and designed to function in a way that every support could be provided to the indigenous manufacturing, innovation and implementation of climate-resilient green growth strategies.


Assuntos
Comércio , Internacionalidade , Índia
3.
Int J Mol Sci ; 23(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36142330

RESUMO

Although allogenic meniscus grafting can be immunologically safe, it causes immune rejection due to an imbalanced tissue supply between donor and recipient. Pigs are anatomically and physiologically similar to adult humans and are, therefore, considered to be advantageous xenotransplantation models. However, immune rejection caused by genetic difference damages the donor tissue and can sometimes cause sudden death. Immune rejection is caused by genes; porcine GGTA1, CMAH, and B4GLANT2 are the most common. In this study, we evaluated immune cells infiltrating the pig meniscus transplanted subcutaneously into BALB/c mice bred for three weeks. We compared the biocompatibility of normal Jeju native black pig (JNP) meniscus with that of triple knockout (TKO) JNP meniscus (α-gal epitope, N-glycolylneuraminic acid (Neu5Gc), and Sd (a) epitope knockout using CRISPR-Cas 9). Mast cells, eosinophils, neutrophils, and macrophages were found to have infiltrated the transplant boundary in the sham (without transplantation), normal (normal JNP), and test (TKO JNP) samples after immunohistochemical analysis. When compared to normal and sham groups, TKO was lower. Cytokine levels did not differ significantly between normal and test groups. Because chronic rejection can occur after meniscus transplantation associated with immune cell infiltration, we propose studies with multiple genetic editing to prevent immune rejection.


Assuntos
Imunidade Inata , Menisco , Animais , Humanos , Camundongos , Animais Geneticamente Modificados , Citocinas/genética , Epitopos , Galactosiltransferases/genética , Técnicas de Inativação de Genes , Rejeição de Enxerto , Menisco/transplante , Camundongos Knockout , Suínos , Transplante Heterólogo
4.
Molecules ; 27(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364371

RESUMO

An assemblage nexus of microorganisms enclosed in a composite extracellular polymeric matrix is called as a biofilm. The main factor causing biological fouling, or biofouling, is biofilms. Biofilm-mediated biofouling is a significant detrimental issue in several industries, including the maritime environment, industrial facilities, water treatment facilities, and medical implants. Conventional antibacterial remedies cannot wholly eradicate bacterial species owing to the structural rigidity of biofilm and the eventual growth of antibiotic-resistant microorganisms. Consequently, several approaches to disrupt the biofilm have been investigated to address this particular phenomenon. Antimicrobial peptides (AMPs) have emerged as a promising contender in this category, offering several advantages over traditional solutions, including broad-spectrum action and lack of antibiotic resistance. Because biofouling significantly impacts the marine industry, AMPs derived from marine sources may be suitable natural inhibitors of bacterial proliferation. In this article, we discuss the range of physicochemical and structural diversity and the model of action seen in marine AMPs. This makes them an appealing strategy to mitigate biofilm and biofilm-mediated biofouling. This review also systematically summarizes recent research on marine AMPs from vertebrates and invertebrates and their industrial significance, shedding light on developing even better anti-biofouling materials shortly.


Assuntos
Peptídeos Antimicrobianos , Incrustação Biológica , Animais , Incrustação Biológica/prevenção & controle , Biofilmes , Bactérias , Antibacterianos/farmacologia , Antibacterianos/química
5.
Curr Genomics ; 21(4): 271-282, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-33071620

RESUMO

BACKGROUND: This study was carried out to classify the diversity of the deep marine psychrotolerant actinomycetes sp. nov., in the Bay of Bengal and exploit the production of cold-active industrial and pharmaceutical biomolecules. OBJECTIVE: 1) Characterization, optimum the growth conditions and classify the diversity of the novel isolated deep marine psychrotolerant actinomycetes sp from the Bay-of-Bengal. 2) Screening for industrially important biocatalysts and determine the antimicrobial activities against the five dreadful pathogens. 3) The differential expression profiling of the candidate genes to regulate the biosynthesis of selected enzymes. METHODS: The cold-adapted actinomycetes were isolated from the deep marine water collections at 1200 mts below the surface in Bay-of-Bengal. The phenotypic and genotypic characterizations have been carried out to understand the persistent diversity of this novel marine psychrotolerant actinomycetes species. The production of cold-active enzymes, such as amylase, cellulase, lipase, pectinase, and L-asparaginase, were screened and the expression profiling genes were determined by using qRT PCR. The antibacterial and antifungal activities have also been investigated. RESULTS: A total number of 37 novel actinomycetes were isolated and the phenotypic and genotypic characterizations identified the genus, dominated by Streptomyces (17 distinct sub-groups) as the major group, followed by Micromonospora, Actinopolyspora, Actinosynnema, Streptoverticillium, Saccharopolyspora, Nocardiopsis, and Nocardia. The optimum growth and abundant mycelium formation are observed at 15°C to 20°C and also capability for thriving at 4°C. All the isolates exhibited a significant role in the production of biocatalysts, and the antagonistic activities were also noted against five major selected pathogens. CONCLUSION: The Streptomyces from the Bay-of-Bengal have high biosynthetic potential and can serve as a good resource for the exploration of bioactive natural products.

6.
Amino Acids ; 51(3): 495-511, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30519757

RESUMO

Sus scrofa provides a major source of animal protein for humans as well as being an excellent biomedical model. This study was carried out to understand, in detail, the genetic and functional variants of Jeju Native Pigs and miniature pigs through differential expression profiling of the genes controlling their immune response, growth performance, and meat quality. The Illumina HiSeq 2000 platform was used for generating 1.3 billion 90 bp paired-end reads, which were mapped to the S. scrofa genome using TopHat2. A total of 2481 and 2768 genes were differentially expressed with 8-log changes in muscle and liver samples, respectively. Five hundred forty-eight genes in muscle and 642 genes in liver samples had BLAST matches within the non-redundant database. GO process and pathway analyses showed enhanced biological processes related to the extracellular structural organization and skeletal muscle cell differentiation in muscle tissue, whereas the liver tissue shares functions related to the inflammatory response. Herein, we identify inflammatory regulatory genes in miniature pigs and growth response genes in Jeju Native Pigs, information which can provide a stronger base for the selection of breeding stock and facilitate further in vitro and in vivo studies for therapeutic purposes.


Assuntos
Perfilação da Expressão Gênica , Sistema Imunitário/metabolismo , Fígado/metabolismo , Músculo Esquelético/metabolismo , Porco Miniatura/genética , Suínos/genética , Transcriptoma , Animais , Sistema Imunitário/crescimento & desenvolvimento , Sistema Imunitário/imunologia , Fígado/crescimento & desenvolvimento , Fígado/imunologia , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/imunologia , Suínos/crescimento & desenvolvimento , Suínos/imunologia , Porco Miniatura/crescimento & desenvolvimento , Porco Miniatura/imunologia
7.
Biochem Biophys Res Commun ; 503(4): 2248-2254, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-29958885

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a major malignant phenotype in pancreatic cancer, which is one of the most death causes by cancer in the world. PDAC developed from pancreatic intra-epithelial neoplasms (PanINs) and poorly diagnosed at early stages. Beside of high drug resistance, metastasis is the great concern during pancreatic cancer treatment. SALL4 expression is inherent in the upregulations of endothelial mesenchymal transition (EMT) genes and therefore promoting cancer metastasis. Furthermore, some of evidences indicated reactive oxygen species (ROS) is also influent to metastasis and self-antioxidant capacity seems a gold standard for successful metastasis rate. In this study, we have found the role Spalt like protein 4 (SALL4) to PDAC proliferation, mobility and its regulation to mitochondrial ROS via FoxM1/Prx III axis. It is possible that SALL4 mainly induces endothelial-mesenchymal transition (EMT) phenotype and favors ROS loss to facilitate metastasis efficiency in PDAC cells. Therefore, SALL4 might be a promising marker for PDAC treatment and targeting SALL4 would benefit anti-proliferative and anti-metastasis therapies.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Proteína Forkhead Box M1/metabolismo , Peroxirredoxina III/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Fatores de Transcrição/fisiologia , Movimento Celular , Proliferação de Células , Transdiferenciação Celular , Humanos , Metástase Neoplásica , Fenótipo
8.
Crit Rev Biotechnol ; 38(8): 1157-1175, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29631431

RESUMO

For more than a quarter of a century, sequencing technologies from Sanger's method to next-generation high-throughput techniques have provided fascinating opportunities in the life sciences. The continuing upward trajectory of sequencing technologies will improve livestock research and expedite the development of various new genomic and technological studies with farm animals. The use of high-throughput technologies in livestock research has increased interest in metagenomics, epigenetics, genome-wide association studies, and identification of single nucleotide polymorphisms and copy number variations. Such studies are beginning to provide revolutionary insights into biological and evolutionary processes. Farm animals, such as cattle, swine, and horses, have played a dual role as economically and agriculturally important animals as well as biomedical research models. The first part of this study explores the current state of sequencing methods, many of which are already used in animal genomic studies, and the second part summarizes the state of cattle, swine, horse, and chicken genome sequencing and illustrates its achievements during the last few years. Finally, we describe several high-throughput sequencing approaches for the improved detection of known, unknown, and emerging infectious agents, leading to better diagnosis of infectious diseases. The insights from viral metagenomics and the advancement of next-generation sequencing will strongly support specific and efficient vaccine development and provide strategies for controlling infectious disease transmission among animal populations and/or between animals and humans. However, prospective sequencing technologies will require further research and in-field testing before reaching the marketplace.


Assuntos
Doenças dos Animais/genética , Análise de Sequência/métodos , Animais , Genômica
9.
Transgenic Res ; 27(2): 211-224, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29574513

RESUMO

This study assessed the effect of supplementation of novel transgenic phytase on growth performance and bone mineralization in Korean native broiler chickens. The experiment was designed using four dietary groups: those with a diet supplemented with (A) recombinant phytase, (B) transgenic phytase from the plant Lemna minor, (C) or wild-type L. minor as well as (D) a control group that was supplemented with commercially available feed. Three hundred 1-day-old Korean native broiler chicks were used and divided into these four dietary treatment groups having three replicates of 25 birds each (n = 75). The results showed increases in growth performance and bone mineralization in Groups B and C; compared with Groups A and D. Hematological analyses revealed notable contrasts in erythrocyte sedimentation rate, red blood cell count, and hemoglobin levels among the experimental groups, whereas no impacts of dietary treatment were observed on total eosinophil, lymphocyte, heterophil, monocyte, and basophil levels. The relative expression profiling of candidate genes showed that the genes involved in growth response, meat quality, and P-Ca metabolism were significantly highly expressed in the phytase-supplemented groups. Hence, it is suggested that dietary supplementation with transgenic phytase plant L. minor for enhancing growth performance is a promising new approach in the broiler feed industry. To the best of our knowledge, we report here the most comprehensive analysis using a broiler model that provides a workable platform for further research on the cost-effective production of feed with different compositions that might be beneficial in the livestock feed industry.


Assuntos
6-Fitase/genética , Ração Animal , Araceae/genética , Plantas Comestíveis/genética , 6-Fitase/química , Animais , Araceae/química , Calcificação Fisiológica/genética , Galinhas/crescimento & desenvolvimento , Suplementos Nutricionais , Plantas Geneticamente Modificadas/genética
10.
Int J Mol Sci ; 19(8)2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30082605

RESUMO

As an innovative technology in biological applications-non-thermal plasma technique-has recently been applied to living cells and tissues. However, it is unclear whether non-thermal plasma treatment can directly regulate the growth and development of livestock. In this study, we exposed four-day-incubated fertilized eggs to plasma at 11.7 kV for 2 min, which was found to be the optimal condition in respect of highest growth rate in chickens. Interestingly, plasma-treated male chickens conspicuously grew faster than females. Plasma treatment regulated the reactive oxygen species homeostasis by controlling the mitochondrial respiratory complex activity and up-regulating the antioxidant defense system. At the same time, growth metabolism was improved due to the increase of growth hormone and insulin-like growth factor 1 and their receptors expression, and the rise of thyroid hormones and adenosine triphosphate levels through the regulation of demethylation levels of growth and hormone biosynthesis-related genes in the skeletal muscles and thyroid glands. To our knowledge, this study was the first to evaluate the effects of a non-thermal plasma treatment on the growth rate of chickens. This safe strategy might be beneficial to the livestock industry.


Assuntos
Hormônios Tireóideos/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Galinhas , Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Espécies Reativas de Oxigênio/metabolismo
11.
Crit Rev Food Sci Nutr ; 57(16): 3449-3463, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26853447

RESUMO

Recent years have seen an unpretending increase in research using dietary phytochemicals for targeting cancer and cancer stem cells (CSCs) due to the limited efficacy of conventional chemotherapy and radiotherapy and numerous associated side effects. A large number of dietary phytochemicals using traditional recommendation and experimental approaches have been demonstrated to have anti-proliferative, anti-metastatic, reactive oxygen species (ROS) inducing, anti-angiogenic, pro-apoptotic effects and efficacy in targeting cellular molecules and pathways implicated in malignancy. Researchers have shown the knack of phytochemicals in interfering with the CSCs self-renewal process. Thus, dietary phytochemicals can play a significant role in the cancer therapy owing to the plethora of targets without toxicity. In this review, we have discussed about the basic knowledge of CSCs, their identification, characterization, mechanism of self-renewal pathways (Wnt/ß-catenin, Hedgehog, and Notch), features that help in the survival of CSCs and use of phytochemicals to replace chemotherapy. Applications of phytochemicals including curcumin, epigallocatechin-3-gallate (EGCG), resveratrol, lycopene, and sulforaphane for their effect on targeting cancer and in particular CSCs along with their molecular mechanisms responsible for pharmacological action are also discussed.


Assuntos
Neoplasias/prevenção & controle , Células-Tronco Neoplásicas/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Catequina/análogos & derivados , Humanos
12.
BMC Complement Altern Med ; 17(1): 304, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28606135

RESUMO

BACKGROUND: Several efforts have been deployed to cure osteosarcoma, a high-grade malignant bone tumour in children and adolescents. However, some challenges such as drug resistance, relapse, and tumour metastasis remain owing to the existence of cancer stem cells (CSC). There is an urgent need to develop cost-effective and safe therapies. METHODS: Wogonin, an extract from the root of Scutellaria baicalensis, has long been considered as a promising natural and safe compound for anti-tumourigenesis, particularly to inhibit tumour invasion and metastasis. Hoechst 33,342 staining, wound healing assay, sphere formation assay, western blotting, and gelatin zymography assays were performed in CD133 positive osteosarcoma cell. RESULTS: In this study, we examined the effect of Wogonin on the mobility of human osteosarcoma CSC. Wogonin induces apoptosis of human osteosarcoma CSC, inhibits its mobility in vitro via downregulation of MMP-9 expression, and represses its renewal ability. CONCLUSIONS: We demonstrated that Wogonin decreases the renewal capacity of CSC. By inhibiting the formation of and reducing the size of spheres, Wogonin at a concentration of 40-80 µM effectively minimizes potential risk from CSC. Taken together, we have demonstrated a new approach for developing a potential therapy for osteosarcoma.


Assuntos
Antígeno AC133/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Flavanonas/farmacologia , Metaloproteinase 9 da Matriz/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Osteossarcoma/enzimologia , Antígeno AC133/genética , Apoptose/efeitos dos fármacos , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/enzimologia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo
13.
BMC Genet ; 17: 35, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26847462

RESUMO

BACKGROUND: This study was performed to identify the non- synonymous polymorphisms in the myosin heavy chain 1 gene (MYH1) association with skeletal muscle development in economically important Jeju Native Pig (JNP) and Berkshire breeds. Herein, we present an in silico analysis, with a focus on (a) in silico approaches to predict the functional effect of non-synonymous SNP (nsSNP) in MYH1 on growth, and (b) molecular docking and dynamic simulation of MYH1 to predict the effects of those nsSNP on protein-protein association. RESULTS: The NextGENe (V 2.3.4.) tool was used to identify the variants in MYH1 from JNP and Berkshire using RNA seq. Gene ontology analysis of MYH1 revealed significant association with muscle contraction and muscle organ development. The 95 % confidence intervals clearly indicate that the mRNA expression of MYH1 is significantly higher in the Berkshire longissimus dorsi muscle samples than JNP breed. Concordant in silico analysis of MYH1, the open-source software tools identified 4 potential nsSNP (L884T, K972C, N981G, and Q1285C) in JNP and 1 nsSNP (H973G) in Berkshire pigs. Moreover, protein-protein interactions were studied to investigate the effect of MYH1 mutations on association with hub proteins, and MYH1 was found to be closely associated with the protein myosin light chain, phosphorylatable, fast skeletal muscle MYLPF. The results of molecular docking studies on MYH1 (native and 4 mutants) and MYLFP demonstrated that the native complex showed higher electrostatic energy (-466.5 Kcal mol(-1)), van der Walls energy (-87.3 Kcal mol(-1)), and interaction energy (-835.7 Kcal mol(-1)) than the mutant complexes. Furthermore, the molecular dynamic simulation revealed that the native complex yielded a higher root-mean-square deviation (0.2-0.55 nm) and lower root-mean-square fluctuation (approximately 0.08-0.3 nm) as compared to the mutant complexes. CONCLUSIONS: The results suggest that the variants at L884T, K972C, N981G, and Q1285C in MYH1 in JNP might represent a cause for the poor growth performance for this breed. This study is a pioneering in-depth in silico analysis of polymorphic MYH1 and will serve as a valuable resource for further targeted molecular diagnosis and population-based studies conducted for improving the growth performance of JNP.


Assuntos
Músculo Esquelético/fisiologia , Cadeias Pesadas de Miosina/genética , Polimorfismo de Nucleotídeo Único , Suínos/crescimento & desenvolvimento , Suínos/genética , Animais , Cruzamento , Feminino , Ontologia Genética , Desequilíbrio de Ligação , Modelos Moleculares , Simulação de Acoplamento Molecular , Contração Muscular/fisiologia , Mutação , Locos de Características Quantitativas , RNA Mensageiro/genética , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Software
14.
Mol Biol Rep ; 41(9): 6305-15, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25008993

RESUMO

Pork is a major source of animal protein for humans. The subcutaneous, intermuscular and the intramuscular fat are the factors responsible for meat quality. RNA-seq is rapidly adopted for the profiling of the transcriptomes in the studies related to gene regulation. The discovery of differentially expressed genes (DEGs) between adult animals of Jeju Native Pig (JNP) and Berkshire breeds are of particular interest for the current study. RNA-seq was used to investigate the transcriptome profiling in the fat tissue. Sequence reads were obtained from Ilumina HiSeq2000 and mapped to the pig genome using Tophat2. Total 153 DEGs were identified and 71 among the annotated genes, have BLAST matches in the non- redundant database. Metabolic, immune response and protein binding are enriched pathways in the fat tissue. In our study, biological adhesion, cellular, developmental and multicellular organismal processes in fat were up-regulated in JNP as compare to Berkshire. Multicellular organismal process, developmental process, embryonic morphogenesis and skeletal system development were the most significantly enriched terms in fat of JNP and Berkshire breeds (p = 1.17E-04, 0.044, 3.47E-04 and 4.48E-04 respectively). COL10A1, COL11A2, PDK4 and PNPLA3 genes responsible for skeletal system morphogenesis and body growth were down regulated in JNP. This study is the first statistical analysis for the detection of DEGs from RNA-seq data generated from fat tissue sample. This analysis can be used as stepping stone to understand the difference in the genetic mechanisms that might influence the identification of novel transcripts, sequence polymorphisms, isoforms and noncoding RNAs.


Assuntos
Tecido Adiposo/metabolismo , Perfilação da Expressão Gênica/métodos , RNA/genética , Análise de Sequência de RNA/métodos , Suínos/genética , Animais , Cruzamento , Mapeamento Cromossômico , Regulação para Baixo , Expressão Gênica , Genoma , Metabolismo dos Lipídeos/genética , Anotação de Sequência Molecular , Fosforilação , Ligação Proteica , Transcriptoma , Regulação para Cima
15.
Ageing Res Rev ; 96: 102275, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38494091

RESUMO

Osteoarthritis (OA), a chronic joint disease affecting millions of people aged over 65 years, is the main musculoskeletal cause of diminished joint mobility in the elderly. It is characterized by lingering pain and increasing deterioration of articular cartilage. Aging and accumulation of senescent cells (SCs) in the joints are frequently associated with OA. Apoptosis resistance; irreversible cell cycle arrest; increased p16INK4a expression, secretion of senescence-associated secretory phenotype factors, senescence-associated ß-galactosidase levels, secretion of extracellular vesicles, and levels of reactive oxygen and reactive nitrogen species; and mitochondrial dysregulation are some common changes in cellular senescence in joint tissues. Development of OA correlates with an increase in the density of SCs in joint tissues. Senescence-associated secretory phenotype has been linked to OA and cartilage breakdown. Senolytics and therapeutic pharmaceuticals are being focused upon for OA management. SCs can be selectively eliminated or killed by senolytics to halt the pathogenesis and progression of OA. Comprehensive understanding of how aging affects joint dysfunction will benefit OA patients. Here, we discuss age-related mechanisms associated with OA pathogenesis and senolytics as an emerging modality in the management of age-related SCs and pathogenesis of OA in preclinical and clinical studies.


Assuntos
Cartilagem Articular , Osteoartrite , Idoso , Humanos , Senoterapia , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Envelhecimento/fisiologia , Senescência Celular/fisiologia , Cartilagem Articular/metabolismo
16.
Arthritis Res Ther ; 26(1): 11, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167214

RESUMO

BACKGROUND: The biological function of Acanthopanax sessiliflorus Harm (ASH) has been investigated on various diseases; however, the effects of ASH on arthritis have not been investigated so far. This study investigates the effects of ASH on rheumatoid arthritis (RA). METHODS: Supercritical carbon dioxide (CO2) was used for ASH extract preparation, and its primary components, pimaric and kaurenoic acids, were identified using gas chromatography-mass spectrometer (GC-MS). Collagenase-induced arthritis (CIA) was used as the RA model, and primary cultures of articular chondrocytes were used to examine the inhibitory effects of ASH extract on arthritis in three synovial joints: ankle, sole, and knee. RESULTS: Pimaric and kaurenoic acids attenuated pro-inflammatory cytokine-mediated increase in the catabolic factors and retrieved pro-inflammatory cytokine-mediated decrease in related anabolic factors in vitro; however, they did not affect pro-inflammatory cytokine (IL-1ß, TNF-α, and IL-6)-mediated cytotoxicity. ASH effectively inhibited cartilage degradation in the knee, ankle, and toe in the CIA model and decreased pannus development in the knee. Immunohistochemistry demonstrated that ASH mostly inhibited the IL-6-mediated matrix metalloproteinase. Gene Ontology and pathway studies bridge major gaps in the literature and provide insights into the pathophysiology and in-depth mechanisms of RA-like joint degeneration. CONCLUSIONS: To the best of our knowledge, this is the first study to conduct extensive research on the efficacy of ASH extract in inhibiting the pathogenesis of RA. However, additional animal models and clinical studies are required to validate this hypothesis.


Assuntos
Artrite Experimental , Artrite Reumatoide , Eleutherococcus , Camundongos , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Eleutherococcus/metabolismo , Interleucina-6 , Artrite Reumatoide/metabolismo , Modelos Animais de Doenças , Citocinas/metabolismo
17.
Prep Biochem Biotechnol ; 43(8): 766-80, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23876137

RESUMO

In the present investigation Thalassospira frigidphilosprofundus, a novel species from the deep waters of the Bay of Bengal, was explored for the production of cold-active ß-galactosidase by submerged fermentation using marine broth medium as the basal medium. Effects of various medium constituents, namely, carbon, nitrogen source, pH, and temperature, were investigated using a conventional one-factor-at-a-time method. It was found that lactose, yeast extract, and bactopeptones are the most influential components for ß-galactosidase production. Under optimal conditions, the production of ß-galactosidase was found to be 3,864 U/mL at 20 ± 2°C, pH 6.5 ± 0.2, after 48 hr of incubation. ß-Galactosidase production was further optimized by the Taguchi orthogonal array design of experiments and the central composite rotatable design (CCRD) of response surface methodology. Under optimal experimental conditions the cold-active ß-galactosidase enzyme production from Thalassospira frigidphilosprofundus was enhanced from 3,864 U/mL to 10,657 U/mL, which is almost three times higher than the cold-active ß-galactosidase production from the well-reported psychrophile Pseudoalteromonas haloplanktis.


Assuntos
Proteínas de Bactérias/biossíntese , Baías/microbiologia , Análise de Componente Principal , Rhodospirillaceae/química , beta-Galactosidase/biossíntese , Proteínas de Bactérias/isolamento & purificação , Carbono/metabolismo , Temperatura Baixa , Meios de Cultura/química , Fermentação , Concentração de Íons de Hidrogênio , Índia , Cinética , Lactose/metabolismo , Nitrogênio/metabolismo , Rhodospirillaceae/enzimologia , beta-Galactosidase/isolamento & purificação
18.
J Inorg Biochem ; 247: 112314, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37478779

RESUMO

In this work, we report a distorted square pyramidal mononuclear copper(II) complex [Cu(L)(NCS)] (1) which was obtained by the reaction of the aqueous solution of ammonium thiocyanate to a methanolic solution of copper nitrate trihydrate and corresponding Schiff-base ligands. Schiff bases, HL (C12H19N3O) act as a tetradentate Schiff base, derived from 1:1 condensation of o-hydroxyacetophenone and diethylenetriamine. The synthesized complex has been successfully characterized based on elemental analysis and Infrared (IR) spectroscopy. The structure of complex 1 was confirmed by single-crystal X-ray diffraction study. In our study, we investigated synthesis, structural characterization, antimicrobial, anti-biofilm, and anti-cancer activity, and plausible mechanism of action of a novel mononuclear copper(II) schiff base complex. Increasing microbial resistance to several commercially available or traditional antimicrobial compounds has become a major global health concern at present time. The mononuclear copper(II) complex exhibited potential antibacterial activity against two strains of the gram-negative pathogen Pseudomonas aeruginosa. The copper compound dependent damage of bacterial cell membrane and inhibition of bacterial biofilm formation were also identified. Moreover, complex 1 inhibited prostate cancer cell growth, and migration by inducing apoptosis and arresting the cell cycle at the G2/M phase. Based on the results, we are suggesting our novel mononuclear copper(II) compound as a potential candidate for the development of new antibacterial and anti-cancer drugs.


Assuntos
Anti-Infecciosos , Neoplasias da Próstata , Humanos , Masculino , Cobre/farmacologia , Cobre/química , Bases de Schiff/química , Estrutura Molecular , Espectroscopia de Ressonância Magnética , Anti-Infecciosos/farmacologia , Bactérias , Antibacterianos/química , Pontos de Checagem do Ciclo Celular , Neoplasias da Próstata/tratamento farmacológico , Apoptose , Ligantes
19.
Antioxidants (Basel) ; 12(3)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36978951

RESUMO

Emerging nanoscience allows us to take advantage of the improved evolutionary components and apply today's advanced characterization and fabrication techniques to solve environmental and biological problems. Despite the promise that nanotechnology will improve our lives, the potential risks of technology remain largely uncertain. The lack of information on bio-impacts and the absence of consistent standards are the limitations of using metal-based nanoparticles (mNPs) for existing applications. To analyze the role played by the mNPs physicochemical characteristics and tactics to protect live beings, the field of nanotoxicology nowadays is focused on collecting and analyzing data from in vitro and in vivo investigations. The degree of reactive oxygen species (ROS) and oxidative stress caused by material nanoparticles (NPs) depends on many factors, such as size, shape, chemical composition, etc. These characteristics enable NPs to enter cells and interact with biological macromolecules and cell organelles, resulting in oxidative damage, an inflammatory response, the development of mitochondrial dysfunction, damage to genetic material, or cytotoxic effects. This report explored the mechanisms and cellular signaling cascades of mNPs-induced oxidative stress and the relevant health consequences.

20.
Biomed Pharmacother ; 157: 114067, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36481405

RESUMO

Holistic healthcare practitioners have now started to focus on specific traditional medicinal mushrooms to treat rheumatoid arthritis (RA). Ganoderma lucidum (GL) is one of the oldest mushrooms that have been used in ancient Chinese medicine to treat inflammatory ailments, including autoimmune diseases such as RA. Spores from this mushroom have specific effects on immunomodulation, aging, and cancer. However, the effect of G. lucidum spores (GLS) on arthritis remains unclear. Therefore, we investigated the effects of GLS oil in a collagen-induced rheumatoid arthritis (CIA) model. Metabolomics analysis revealed that GLS oil contains ten acids, of which oleic acid (52.12%) and linoleic acid (16.77%) predominated. The GLS oil-treated CIA mice had a significantly lower clinical score (p = 0.0384) for RA than the control CIA mice. Moreover, GLS oil reduced CIA-induced cartilage degeneration and synovial membrane inflammation in the knee. The GLS oil group showed significantly reduced knee eosinophilia (p = 0.0056). Immunostaining of neutrophils revealed that neutrophils infiltrated the CIA group; however, infiltrated neutrophils were significantly reduced in the GLS oil group in both the knees (p = 0.0006) and ankles (p = 0.0023). GLS oil treatment substantially suppressed LPS- or TNF-α-induced IL-6 mRNA expression in primary cultured chondrocytes. IL-6 immunohistochemistry results showed that the protein levels of IL-6 were attenuated in the GLS oil group compared to the CIA group. These findings suggest that GLS oil may be useful for the development of RA drugs. Further clinical research is required to identify significant improvements.


Assuntos
Artrite Experimental , Artrite Reumatoide , Reishi , Camundongos , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Interleucina-6/farmacologia , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/tratamento farmacológico , Membrana Sinovial , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA