Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(3): e1011998, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38530845

RESUMO

Epstein-Barr virus (EBV) contributes to ~1% of all human cancers including several B-cell neoplasms. A characteristic feature of EBV life cycle is its ability to transform metabolically quiescent B-lymphocytes into hyperproliferating B-cell blasts with the establishment of viral latency, while intermittent lytic cycle induction is necessary for the production of progeny virus. Our RNA-Seq analyses of both latently infected naïve B-lymphocytes and transformed B-lymphocytes upon lytic cycle replication indicate a contrasting expression pattern of a membrane-associated carbonic anhydrase isoform CA9, an essential component for maintaining cell acid-base homeostasis. We show that while CA9 expression is transcriptionally activated during latent infection model, lytic cycle replication restrains its expression. Pharmacological inhibition of CA-activity using specific inhibitors retards EBV induced B-cell transformation, inhibits B-cells outgrowth and colony formation ability of transformed B-lymphocytes through lowering the intracellular pH, induction of cell apoptosis and facilitating degradation of CA9 transcripts. Reanalyses of ChIP-Seq data along with utilization of EBNA2 knockout virus, ectopic expression of EBNA2 and sh-RNA mediated knockdown of CA9 expression we further demonstrate that EBNA2 mediated CA9 transcriptional activation is essential for EBV latently infected B-cell survival. In contrast, during lytic cycle reactivation CA9 expression is transcriptionally suppressed by the key EBV lytic cycle transactivator, BZLF1 through its transactivation domain. Overall, our study highlights the dynamic alterations of CA9 expression and its activity in regulating pH homeostasis act as one of the major drivers for EBV induced B-cell transformation and subsequent B-cell lymphomagenesis.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Humanos , Herpesvirus Humano 4/fisiologia , Infecções por Vírus Epstein-Barr/genética , Linfócitos B , Latência Viral , Transativadores/genética , Ativação Viral , Regulação Viral da Expressão Gênica
2.
PLoS Genet ; 19(8): e1010885, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37603562

RESUMO

Regulation of the microtubule cytoskeleton is crucial for the development and maintenance of neuronal architecture, and recent studies have highlighted the significance of regulated RNA processing in the establishment and maintenance of neural circuits. In a genetic screen conducted using mechanosensory neurons of C. elegans, we identified a mutation in muscleblind-1/mbl-1 as a suppressor of loss of kinesin-13 family microtubule destabilizing factor klp-7. Muscleblind-1(MBL-1) is an RNA-binding protein that regulates the splicing, localization, and stability of RNA. Our findings demonstrate that mbl-1 is required cell-autonomously for axon growth and proper synapse positioning in the posterior lateral microtubule (PLM) neuron. Loss of mbl-1 leads to increased microtubule dynamics and mixed orientation of microtubules in the anterior neurite of PLM. These defects are also accompanied by abnormal axonal transport of the synaptic protein RAB-3 and reduction of gentle touch sensation in mbl-1 mutant. Our data also revealed that mbl-1 is genetically epistatic to mec-7 (ß tubulin) and mec-12 (α tubulin) in regulating axon growth. Furthermore, mbl-1 is epistatic to sad-1, an ortholog of BRSK/Brain specific-serine/threonine kinase and a known regulator of synaptic machinery, for synapse formation at the correct location of the PLM neurite. Notably, the immunoprecipitation of MBL-1 resulted in the co-purification of mec-7, mec-12, and sad-1 mRNAs, suggesting a direct interaction between MBL-1 and these transcripts. Additionally, mbl-1 mutants exhibited reduced levels and stability of mec-7 and mec-12 transcripts. Our study establishes a previously unknown link between RNA-binding proteins and cytoskeletal machinery, highlighting their crucial roles in the development and maintenance of the nervous system.


Assuntos
Caenorhabditis elegans , Tubulina (Proteína) , Animais , Tubulina (Proteína)/genética , Caenorhabditis elegans/genética , RNA Mensageiro , Citoesqueleto/genética , Microtúbulos/genética , Neurônios
3.
PLoS Genet ; 18(3): e1010127, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35344539

RESUMO

Neurons are vulnerable to physical insults, which compromise the integrity of both dendrites and axons. Although several molecular pathways of axon regeneration are identified, our knowledge of dendrite regeneration is limited. To understand the mechanisms of dendrite regeneration, we used the PVD neurons in C. elegans with stereotyped branched dendrites. Using femtosecond laser, we severed the primary dendrites and axon of this neuron. After severing the primary dendrites near the cell body, we observed sprouting of new branches from the proximal site within 6 hours, which regrew further with time in an unstereotyped manner. This was accompanied by reconnection between the proximal and distal dendrites, and fusion among the higher-order branches as reported before. We quantified the regeneration pattern into three aspects-territory length, number of branches, and fusion phenomena. Axonal injury causes a retraction of the severed end followed by a Dual leucine zipper kinase-1 (DLK-1) dependent regrowth from the severed end. We tested the roles of the major axon regeneration signalling hubs such as DLK-1-RPM-1, cAMP elevation, let-7 miRNA, AKT-1, Phosphatidylserine (PS) exposure/PS in dendrite regeneration. We found that neither dendrite regrowth nor fusion was affected by the axon injury pathway molecules. Surprisingly, we found that the RAC GTPase, CED-10 and its upstream GEF, TIAM-1 play a cell-autonomous role in dendrite regeneration. Additionally, the function of CED-10 in epidermal cell is critical for post-dendrotomy fusion phenomena. This work describes a novel regulatory mechanism of dendrite regeneration and provides a framework for understanding the cellular mechanism of dendrite regeneration using PVD neuron as a model system.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T , Proteínas rac de Ligação ao GTP , Animais , Axônios/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Dendritos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , MAP Quinase Quinase Quinases/genética , Regeneração Nervosa/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/metabolismo , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo
4.
Development ; 148(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34109380

RESUMO

The adult nervous system has a limited capacity to regenerate after accidental damage. Post-injury functional restoration requires proper targeting of the injured axon to its postsynaptic cell. Although the initial response to axonal injury has been studied in great detail, it is rather unclear what controls the re-establishment of a functional connection. Using the posterior lateral microtubule neuron in Caenorhabditis elegans, we found that after axotomy, the regrowth from the proximal stump towards the ventral side and accumulation of presynaptic machinery along the ventral nerve cord correlated to the functional recovery. We found that the loss of insulin receptor DAF-2 promoted 'ventral targeting' in a DAF-16-dependent manner. We further showed that coordinated activities of DAF-16 in neuron and muscle promoted 'ventral targeting'. In response to axotomy, expression of the Netrin receptor UNC-40 was upregulated in the injured neuron in a DAF-16-dependent manner. In contrast, the DAF-2-DAF-16 axis contributed to the age-related decline in Netrin expression in muscle. Therefore, our study revealed an important role for insulin signaling in regulating the axon guidance molecules during the functional rewiring process.


Assuntos
Axônios/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Moléculas de Adesão Celular/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Netrinas/metabolismo , Animais , Orientação de Axônios , Proteínas de Caenorhabditis elegans/genética , Moléculas de Adesão Celular/genética , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Microtúbulos/metabolismo , Fatores de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Netrina/metabolismo , Netrinas/genética , Neurônios/metabolismo , Transdução de Sinais
5.
PLoS Genet ; 17(2): e1009346, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33524034

RESUMO

Ethanol is a widely used drug, excessive consumption of which could lead to medical conditions with diverse symptoms. Ethanol abuse causes dysfunction of memory, attention, speech and locomotion across species. Dopamine signaling plays an essential role in ethanol dependent behaviors in animals ranging from C. elegans to humans. We devised an ethanol dependent assay in which mutants in the dopamine autoreceptor, dop-2, displayed a unique sedative locomotory behavior causing the animals to move in circles while dragging the posterior half of their body. Here, we identify the posterior dopaminergic sensory neuron as being essential to modulate this behavior. We further demonstrate that in dop-2 mutants, ethanol exposure increases dopamine secretion and functions in a DVA interneuron dependent manner. DVA releases the neuropeptide NLP-12 that is known to function through cholinergic motor neurons and affect movement. Thus, DOP-2 modulates dopamine levels at the synapse and regulates alcohol induced movement through NLP-12.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Etanol/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Depressores do Sistema Nervoso Central/farmacologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Humanos , Locomoção/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/fisiologia , Mutação , Neuropeptídeos/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/fisiologia , Transdução de Sinais/efeitos dos fármacos
6.
J Am Soc Nephrol ; 34(9): 1521-1534, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37332102

RESUMO

SIGNIFICANCE STATEMENT: Heterozygous DNAJB11 mutation carriers manifest with small cystic kidneys and renal failure in adulthood. Recessive cases with prenatal cystic kidney dysplasia were recently described. Our in vitro and mouse model studies investigate the proposed disease mechanism as an overlap of autosomal-dominant polycystic kidney disease and autosomal-dominant tubulointerstitial kidney disease pathogenesis. We find that DNAJB11 loss impairs cleavage and maturation of the autosomal-dominant polycystic kidney disease protein polycystin-1 (PC1) and results in dosage-dependent cyst formation in mice. We find that Dnajb11 loss does not activate the unfolded protein response, drawing a fundamental contrast with the pathogenesis of autosomal-dominant tubulointerstitial kidney disease. We instead propose that fibrosis in DNAJB11 -kidney disease may represent an exaggerated response to polycystin-dependent cysts. BACKGROUND: Patients with heterozygous inactivating mutations in DNAJB11 manifest with cystic but not enlarged kidneys and renal failure in adulthood. Pathogenesis is proposed to resemble an overlap of autosomal-dominant polycystic kidney disease (ADPKD) and autosomal-dominant tubulointerstitial kidney disease (ADTKD), but this phenotype has never been modeled in vivo . DNAJB11 encodes an Hsp40 cochaperone in the endoplasmic reticulum: the site of maturation of the ADPKD polycystin-1 (PC1) protein and of unfolded protein response (UPR) activation in ADTKD. We hypothesized that investigation of DNAJB11 would shed light on mechanisms for both diseases. METHODS: We used germline and conditional alleles to model Dnajb11 -kidney disease in mice. In complementary experiments, we generated two novel Dnajb11-/- cell lines that allow assessment of PC1 C-terminal fragment and its ratio to the immature full-length protein. RESULTS: Dnajb11 loss results in a profound defect in PC1 cleavage but with no effect on other cystoproteins assayed. Dnajb11-/- mice are live-born at below the expected Mendelian ratio and die at a weaning age with cystic kidneys. Conditional loss of Dnajb11 in renal tubular epithelium results in PC1 dosage-dependent kidney cysts, thus defining a shared mechanism with ADPKD. Dnajb11 mouse models show no evidence of UPR activation or cyst-independent fibrosis, which is a fundamental distinction from typical ADTKD pathogenesis. CONCLUSIONS: DNAJB11 -kidney disease is on the spectrum of ADPKD phenotypes with a PC1-dependent pathomechanism. The absence of UPR across multiple models suggests that alternative mechanisms, which may be cyst-dependent, explain the renal failure in the absence of kidney enlargement.


Assuntos
Cistos , Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Insuficiência Renal , Camundongos , Animais , Rim Policístico Autossômico Dominante/patologia , Canais de Cátion TRPP/metabolismo , Rim/patologia , Doenças Renais Policísticas/metabolismo , Modelos Animais de Doenças , Insuficiência Renal/complicações , Cistos/genética
7.
Bioinformatics ; 38(22): 5026-5032, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36124954

RESUMO

MOTIVATION: Survival risk prediction using gene expression data is important in making treatment decisions in cancer. Standard neural network (NN) survival analysis models are black boxes with a lack of interpretability. More interpretable visible neural network architectures are designed using biological pathway knowledge. But they do not model how pathway structures can change for particular cancer types. RESULTS: We propose a novel Mutated Pathway Visible Neural Network (MPVNN) architecture, designed using prior signaling pathway knowledge and random replacement of known pathway edges using gene mutation data simulating signal flow disruption. As a case study, we use the PI3K-Akt pathway and demonstrate overall improved cancer-specific survival risk prediction of MPVNN over other similar-sized NN and standard survival analysis methods. We show that trained MPVNN architecture interpretation, which points to smaller sets of genes connected by signal flow within the PI3K-Akt pathway that is important in risk prediction for particular cancer types, is reliable. AVAILABILITY AND IMPLEMENTATION: The data and code are available at https://github.com/gourabghoshroy/MPVNN. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Neoplasias , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt , Redes Neurais de Computação , Neoplasias/genética , Mutação
8.
Cell Commun Signal ; 21(1): 114, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208782

RESUMO

BACKGROUND: Zika virus (ZIKV), an arbovirus of global concern, has been associated with neurological complications including microcephaly in newborns and Guillain-Barré syndrome in adults. Like other flaviviruses, ZIKV depends on cholesterol to facilitate its replication; thus, cholesterol has been proposed as a therapeutic target to treat the infection using FDA-approved statins. Cholesterol is stored in intracellular lipid droplets (LD) in the form of cholesterol esters and can be regulated by autophagy. We hypothesize that the virus hijacks autophagy machinery as an early step to increase the formation of LD and viral replication, and that interference with this pathway will limit reproduction of virus. METHODS: We pretreated MDCK cells with atorvastatin or other inhibitors of autophagy prior to infection with ZIKV. We measured viral expression by qPCR for NS1 RNA and immunofluorescence for Zika E protein. RESULTS: Autophagy increases in virus-infected cells as early as 6 h post infection (hpi). In the presence of atorvastatin, LD are decreased, and cholesterol is reduced, targeting key steps in viral replication, resulting in suppression of replication of ZIKV is suppressed. Other both early- and late-acting autophagy inhibitors decrease both the number of LD and viral replication. Bafilomycin renders cholesterol is inaccessible to ZIKV. We also confirm previous reports of a bystander effect, in which neighboring uninfected cells have higher LD counts compared to infected cells. CONCLUSIONS: We conclude that atorvastatin and inhibitors of autophagy lead to lower availability of LD, decreasing viral replication. We conclude that bafilomycin A1 inhibits viral expression by blocking cholesterol esterification to form LD. Video Abstract.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Atorvastatina/farmacologia , Autofagia , Metabolismo dos Lipídeos , Replicação Viral , Infecção por Zika virus/metabolismo , Células Madin Darby de Rim Canino , Animais , Cães
9.
Bioinformatics ; 36(21): 5187-5193, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-32697830

RESUMO

MOTIVATION: Inferring gene regulatory networks (GRNs) from expression data is a significant systems biology problem. A useful inference algorithm should not only unveil the global structure of the regulatory mechanisms but also the details of regulatory interactions such as edge direction (from regulator to target) and sign (activation/inhibition). Many popular GRN inference algorithms cannot infer edge signs, and those that can infer signed GRNs cannot simultaneously infer edge directions or network cycles. RESULTS: To address these limitations of existing algorithms, we propose Polynomial Lasso Bagging (PoLoBag) for signed GRN inference with both edge directions and network cycles. PoLoBag is an ensemble regression algorithm in a bagging framework where Lasso weights estimated on bootstrap samples are averaged. These bootstrap samples incorporate polynomial features to capture higher-order interactions. Results demonstrate that PoLoBag is consistently more accurate for signed inference than state-of-the-art algorithms on simulated and real-world expression datasets. AVAILABILITY AND IMPLEMENTATION: Algorithm and data are freely available at https://github.com/gourabghoshroy/PoLoBag. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Redes Reguladoras de Genes , Biologia Computacional , Biologia de Sistemas
10.
Proc Natl Acad Sci U S A ; 114(47): E10206-E10215, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29109254

RESUMO

Neuronal injury often leads to devastating consequences such as loss of senses or locomotion. Restoration of function after injury relies on whether the injured axons can find their target cells. Although fusion between injured proximal axon and distal fragment has been observed in many organisms, its functional significance is not clear. Here, using Caenorhabditis elegans mechanosensory neurons, we address this question. Using two femtosecond lasers simultaneously, we could scan and sever posterior lateral microtubule neurons [posterior lateral microtubules (PLMs)] on both sides of the worm. We showed that axotomy of both PLMs leads to a dramatic loss of posterior touch sensation. During the regenerative phase, only axons that fuse to their distal counterparts contribute to functional recovery. Loss of let-7 miRNA promotes functional restoration in both larval and adult stages. In the L4 stage, loss of let-7 increases fusion events by increasing the mRNA level of one of the cell-recognition molecules, CED-7. The ability to establish cytoplasmic continuity between the proximal and distal ends declines with age. Loss of let-7 overcomes this barrier by promoting axonal transport and enrichment of the EFF-1 fusogen at the growing tip of cut processes. Our data reveal the functional property of a regenerating neuron.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Axônios/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Glicoproteínas de Membrana/fisiologia , MicroRNAs/metabolismo , Regeneração Nervosa/genética , Células Receptoras Sensoriais/fisiologia , Animais , Transporte Axonal/fisiologia , Axotomia , Citoplasma/fisiologia , Microtúbulos/fisiologia , Tato
12.
Appetite ; 132: 73-81, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30261234

RESUMO

This study examined relationships between contextual factors and within-person variations in snack food and sweetened beverage intake in African American women (n = 79), aged 25-65 years living in metropolitan Chicago. For seven days, participants wore a global positioning system (GPS) logger and were signaled five times per day to complete an ecological momentary assessment (EMA) survey assessing behaviors and environmental, social, and other contextual factors via smartphones. Within-person associations between snack food and beverage intake and contextual factors were analyzed using three-level logistic regressions. Participants reported consuming a snack food at 38.4% of signals and a sweetened beverage at 17.9% of signals. Fast food restaurant and convenience store density within the daily activity space was not associated with either snack food or sweetened beverage intake. However, perceptions of close proximity to fast food restaurants and convenience stores making it easier to eat/drink, while accounting for one's usual proximity, were associated with increased odds of snack intake (O.R. 2.1; 95% C.I. 1.4, 3.0) but not sweetened beverage. We also found engaging in activities such as watching television (O.R. 1.8; 95% C.I. 1.2, 2.7) and talking (O.R. 1.7; 95% C.I. 1.1, 2.6) while eating were associated with higher snack intake. These factors were not related to sweetened beverage intake. Public health interventions addressing fast food restaurant and convenience store accessibility and food offerings and marketing within these outlets may help reduce snack food intake. Additionally, to reduce concurrent activities while eating, real-time interventions using smart technology could be used to enhance attentive eating in this population.


Assuntos
Emoções , Comportamento Alimentar/psicologia , Estigma Social , Adulto , Negro ou Afro-Americano , Chicago , Avaliação Momentânea Ecológica , Fast Foods , Transtornos da Alimentação e da Ingestão de Alimentos , Feminino , Humanos , Pessoa de Meia-Idade , Restaurantes , Lanches , Bebidas Adoçadas com Açúcar
13.
PLoS One ; 19(3): e0298766, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38498505

RESUMO

PVD neuron of C. elegans has become an attractive model for the study of dendrite development and regeneration due to its elaborate and stereotype dendrite morphology. RNA interference (RNAi) by feeding E. coli expressing dsRNA has been the basis of several genome wide screens performed using C. elegans. However, the feeding method often fails when it comes to knocking down genes in nervous system. In order to optimize the RNAi conditions for PVD neuron, we fed the worm strains with E. coli HT115 bacteria expressing dsRNA against mec-3, hpo-30, and tiam-1, whose loss of function are known to show dendrite morphology defects in PVD neuron. We found that RNAi of these genes in the available sensitive backgrounds including the one expresses sid-1 under unc-119 promoter, although resulted in reduction of dendrite branching, the phenotypes were significantly modest compared to the respective loss of function mutants. In order to enhance RNAi in PVD neurons, we generated a strain that expressed sid-1 under the promoter mec-3, which exhibits strong expression in PVD. When Pmec-3::sid-1 is expressed in either nre-1(-)lin-15b(-) or lin-15b(-) backgrounds, the higher order branching phenotype after RNAi of mec-3, hpo-30, and tiam-1 was significantly enhanced as compared to the genetic background alone. Moreover, knockdown of genes playing role in dendrite regeneration in the nre-1(-)lin-15b(-), Pmec-3-sid-1[+] background resulted in significant reduction in dendrite regeneration following laser injury. The extent of dendrite regrowth due to the RNAi of aff-1 or ced-10 in our optimized strain was comparable to that of aff-1 and ced-10 mutants. Essentially, our strain expressing sid-1 in PVD neuron, provides an RNAi optimized platform for high throughput screening of genes involved in PVD development, maintenance and regeneration.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Interferência de RNA , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Escherichia coli/metabolismo , Neurônios/metabolismo
14.
Int Rev Cell Mol Biol ; 386: 81-131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38782502

RESUMO

Autophagy and Unfolded Protein Response (UPR) can be regarded as the safe keepers of cells exposed to intense stress. Autophagy maintains cellular homeostasis, ensuring the removal of foreign particles and misfolded macromolecules from the cytoplasm and facilitating the return of the building blocks into the system. On the other hand, UPR serves as a shock response to prolonged stress, especially Endoplasmic Reticulum Stress (ERS), which also includes the accumulation of misfolded proteins in the ER. Since one of the many effects of viral infection on the host cell machinery is the hijacking of the host translational system, which leaves in its wake a plethora of misfolded proteins in the ER, it is perhaps not surprising that UPR and autophagy are common occurrences in infected cells, tissues, and patient samples. In this book chapter, we try to emphasize how UPR, and autophagy are significant in infections caused by six major oncolytic viruses-Epstein-Barr (EBV), Human Papilloma Virus (HPV), Human Immunodeficiency Virus (HIV), Human Herpesvirus-8 (HHV-8), Human T-cell Lymphotropic Virus (HTLV-1), and Hepatitis B Virus (HBV). Here, we document how whole-virus infection or overexpression of individual viral proteins in vitro and in vivo models can regulate the different branches of UPR and the various stages of macro autophagy. As is true with other viral infections, the relationship is complicated because the same virus (or the viral protein) exerts different effects on UPR and Autophagy. The nature of this response is determined by the cell types, or in some cases, the presence of diverse extracellular stimuli. The vice versa is equally valid, i.e., UPR and autophagy exhibit both anti-tumor and pro-tumor properties based on the cell type and other factors like concentrations of different metabolites. Thus, we have tried to coherently summarize the existing knowledge, the crux of which can hopefully be harnessed to design vaccines and therapies targeted at viral carcinogenesis.


Assuntos
Autofagia , Resposta a Proteínas não Dobradas , Humanos , Carcinogênese/patologia , Carcinogênese/metabolismo , Animais , Estresse do Retículo Endoplasmático
15.
Front Cell Infect Microbiol ; 14: 1367566, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983114

RESUMO

Humanized mouse models are valuable tools for investigating the human immune system in response to infection and injury. We have previously described the human immune system (HIS)-DRAGA mice (HLA-A2.HLA-DR4.Rag1KO.IL-2RgKO.NOD) generated by infusion of Human Leukocyte Antigen (HLA)-matched, human hematopoietic stem cells from umbilical cord blood. By reconstituting human cells, the HIS-DRAGA mouse model has been utilized as a "surrogate in vivo human model" for infectious diseases such as Human Immunodeficiency Virus (HIV), Influenza, Coronavirus Disease 2019 (COVID-19), scrub typhus, and malaria. This humanized mouse model bypasses ethical concerns about the use of fetal tissues for the humanization of laboratory animals. Here in, we demonstrate the presence of human microglia and T cells in the brain of HIS-DRAGA mice. Microglia are brain-resident macrophages that play pivotal roles against pathogens and cerebral damage, whereas the brain-resident T cells provide surveillance and defense against infections. Our findings suggest that the HIS-DRAGA mouse model offers unique advantages for studying the functions of human microglia and T cells in the brain during infections, degenerative disorders, tumors, and trauma, as well as for testing therapeutics in these pathological conditions.


Assuntos
Encéfalo , Modelos Animais de Doenças , Microglia , Linfócitos T , Animais , Microglia/imunologia , Humanos , Camundongos , Encéfalo/imunologia , Linfócitos T/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia
16.
Mol Biol Cell ; 35(9): ar115, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38985513

RESUMO

The polarized nature of neurons depends on their microtubule dynamics and orientation determined by both microtubule-stabilizing and destabilizing factors. The role of destabilizing factors in developing and maintaining neuronal polarity is unclear. We investigated the function of KLP-7, a microtubule depolymerizing motor of the Kinesin-13 family, in axon-dendrite compartmentalization using PVD neurons in Caenorhabditis elegans. Loss of KLP-7 caused a mislocalization of axonal proteins, including RAB-3, SAD-1, and their motor UNC-104, to dendrites. This is rescued by cell-autonomous expression of the KLP-7 or colchicine treatment, indicating the involvement of KLP-7-dependent microtubule depolymerization. The high mobility of KLP-7 is correlated to increased microtubule dynamics in the dendrites, which restricts the enrichment of UNC-44, an integral component of Axon Initial Segment (AIS) in these processes. Due to the loss of KLP-7, ectopic enrichment of UNC-44 in the dendrite potentially redirects axonal traffic into dendrites that include plus-end out microtubules, axonal motors, and cargoes. These observations indicate that KLP-7-mediated depolymerization defines the microtubule dynamics conducive to the specific enrichment of AIS components in dendrites. This further compartmentalizes dendritic and axonal microtubules, motors, and cargoes, thereby influencing neuronal polarity.


Assuntos
Axônios , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Polaridade Celular , Dendritos , Cinesinas , Microtúbulos , Animais , Caenorhabditis elegans/metabolismo , Dendritos/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Axônios/metabolismo , Polaridade Celular/fisiologia , Neurônios/metabolismo , Transporte Proteico , Proteínas do Tecido Nervoso/metabolismo
17.
eNeuro ; 11(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548333

RESUMO

PVD neuron of Caenorhabditis elegans is a highly polarized cell with well-defined axonal, and dendritic compartments. PVD neuron operates in multiple sensory modalities including the control of both nociceptive touch sensation and body posture. Although both the axon and dendrites of this neuron show a regeneration response following laser-assisted injury, it is rather unclear how the behavior associated with this neuron is affected by the loss of these structures. It is also unclear whether neurite regrowth would lead to functional restoration in these neurons. Upon axotomy, using a femtosecond laser, we saw that harsh touch response was specifically affected leaving the body posture unperturbed. Subsequently, recovery in the touch response is highly correlated to the axon regrowth, which was dependent on DLK-1/MLK-1 MAP Kinase. Dendrotomy of both major and minor primary dendrites affected the wavelength and amplitude of sinusoidal movement without any apparent effect on harsh touch response. We further correlated the recovery in posture behavior to the type of dendrite regeneration events. We found that dendrite regeneration through the fusion and reconnection between the proximal and distal branches of the injured dendrite corresponded to improved recovery in posture. Our data revealed that the axons and dendrites of PVD neurons regulate the nociception and proprioception in worms, respectively. It also revealed that dendrite and axon regeneration lead to the restoration of these differential sensory modalities.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Dendritos , Regeneração Nervosa , Animais , Caenorhabditis elegans/fisiologia , Dendritos/fisiologia , Regeneração Nervosa/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Recuperação de Função Fisiológica/fisiologia , Células Receptoras Sensoriais/fisiologia , Axotomia , Tato/fisiologia , Animais Geneticamente Modificados , Axônios/fisiologia , MAP Quinase Quinase Quinases
18.
G3 (Bethesda) ; 14(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37943814

RESUMO

Bird plumage coloration is a complex and multifactorial process that involves both genetic and environmental factors. Diverse pigment groups contribute to plumage variation in different birds. In parrots, the predominant green color results from the combination of 2 different primary colors: yellow and blue. Psittacofulvin, a pigment uniquely found in parrots, is responsible for the yellow coloration, while blue is suggested to be the result of light scattering by feather nanostructures and melanin granules. So far, genetic control of melanin-mediated blue coloration has been elusive. In this study, we demonstrated that feather from the yellow mutant rose-ringed parakeet displays loss of melanosome granules in spongy layer of feather barb. Using whole genome sequencing, we found that mutation in SLC45A2, an important solute carrier protein in melanin synthetic pathway, is responsible for the sex-linked yellow phenotype in rose-ringed parakeet. Intriguingly, one of the mutations, P53L found in yellow Psittacula krameri is already reported as P58A/S in the human albinism database, known to be associated with human OCA4. We further showed that mutations in SLC45A2 gene affect melanin production also in other members of Psittaculidae family such as alexandrine and plum-headed parakeets. Additionally, we demonstrate that the mutations associated with the sex-linked yellow phenotype, localized within the transmembrane domains of the SLC45A2 protein, affect the protein localization pattern. This is the first evidence of plumage color variation involving SLC45A2 in parrots and confirmation of associated mutations in the transmembrane domains of the protein that affects its localization.


Assuntos
Melaninas , Papagaios , Humanos , Animais , Melaninas/genética , Plumas/química , Plumas/metabolismo , Mutação , Papagaios/metabolismo , Fenótipo , Pigmentação/genética , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Proteínas de Membrana Transportadoras/genética
19.
J Immunol ; 187(11): 5783-94, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22043008

RESUMO

Efficient clearance of apoptotic cells by phagocytes (efferocytosis) is critical for normal tissue homeostasis and regulation of the immune system. Apoptotic cells are recognized by a vast repertoire of receptors on macrophage that lead to transient formation of phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P(3)] and subsequent cytoskeletal reorganization necessary for engulfment. Certain PI3K isoforms are required for engulfment of apoptotic cells, but relatively little is known about the role of lipid phosphatases in this process. In this study, we report that the activity of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a phosphatidylinositol 3-phosphatase, is elevated upon efferocytosis. Depletion of PTEN in macrophage results in elevated PtdIns(3,4,5)P(3) production and enhanced phagocytic ability both in vivo and in vitro, whereas overexpression of wild-type PTEN abrogates this process. Loss of PTEN in macrophage leads to activation of the pleckstrin homology domain-containing guanine-nucleotide exchange factor Vav1 and subsequent activation of Rac1 GTPase, resulting in increased amounts of F-actin upon engulfment of apoptotic cells. PTEN disruption also leads to increased production of anti-inflammatory cytokine IL-10 and decreased production of proinflammatory IL-6 and TNF-α upon engulfment of apoptotic cells. These data suggest that PTEN exerts control over efferocytosis potentially by regulating PtdIns(3,4,5)P(3) levels that modulate Rac GTPase and F-actin reorganization through Vav1 exchange factor and enhancing apoptotic cell-induced anti-inflammatory response.


Assuntos
Apoptose/imunologia , Ativação Enzimática/imunologia , PTEN Fosfo-Hidrolase/imunologia , Fagocitose/imunologia , Proteínas rac de Ligação ao GTP/imunologia , Animais , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase/metabolismo , Transdução de Sinais/imunologia , Proteínas rac de Ligação ao GTP/metabolismo
20.
Proc Natl Acad Sci U S A ; 107(8): 3493-8, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20133681

RESUMO

The ability to rapidly and specifically regulate protein activity combined with in vivo functional assays and/or imaging can provide unique insight into underlying molecular processes. Here we describe the application of chemically induced dimerization of FKBP to create nearly instantaneous high-affinity bivalent ligands capable of sequestering cellular targets from their endogenous partners. We demonstrate the specificity and efficacy of these inducible, dimeric "traps" for the dynein light chains LC8 (Dynll1) and TcTex1 (Dynlt1). Both light chains can simultaneously bind at adjacent sites of dynein intermediate chain at the base of the dynein motor complex, yet their specific function with respect to the dynein motor or other interacting proteins has been difficult to dissect. Using these traps in cultured mammalian cells, we observed that induction of dimerization of either the LC8 or TcTex1 trap rapidly disrupted early endosomal and lysosomal organization. Dimerization of either trap also disrupted Golgi organization, but at a substantially slower rate. Using either trap, the time course for disruption of each organelle was similar, suggesting a common regulatory mechanism. However, despite the essential role of dynein in cell division, neither trap had a discernable effect on mitotic progression. Taken together, these studies suggest that LC occupancy of the dynein motor complex directly affects some, but not all, dynein-mediated processes. Although the described traps offer a method for rapid inhibition of dynein function, the design principle can be extended to other molecular complexes for in vivo studies.


Assuntos
Dineínas do Citoplasma/metabolismo , Dineínas/metabolismo , Animais , Células COS , Chlorocebus aethiops , Dineínas do Citoplasma/genética , Dineínas/genética , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Ligantes , Lisossomos/metabolismo , Multimerização Proteica , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA