Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Chem Soc Rev ; 49(16): 5648-5663, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32720663

RESUMO

Heterogeneous catalysis, a process in which the reaction of gaseous or liquid chemical reagents is facilitated at the surface of a solid material, is responsible for the majority of industrial-scale chemical and fuel production reactions. The energy required to drive these reactions has historically been derived from the combustion of non-renewable fossil fuels and carries an unavoidably large carbon footprint. More recently, the development of environmentally responsible and sustainable chemical industries is increasingly motivated by greenhouse gas-induced climate change, thus creating demand for eco-friendly heterogeneous catalytic processes. This includes innovative approaches enabled by renewable forms of energy, such as the electrification of chemical and petrochemical processes, utilization of CO2 as a feedstock and the incorporation of light into catalytic reactions. Herein we review the conversion of solar energy to chemical energy using CO2, and describe how the photophysical and photochemical properties of nanostructured metal oxide photocatalysts have been engineered to efficiently incorporate light into heterogeneous gas-solid CO2 hydrogenation reactions. Realizing high photonic and energy efficiencies in these systems has demanded innovation in not only photocatalyst engineering, but also photoreactor and process engineering. Rather than exclusively providing an in-depth discussion of the chemistry and science within each individual study, this Tutorial Review highlights the multidisciplinary character of photocatalysis studies by covering the four essential components of a typical research work in this field (materials engineering, theoretical modelling, reactor engineering and process development) via case studies of the archetypal indium oxide catalyst materials. Through advances in these four components, progress has been made towards the ultimate goal of industrializing the production of CO2-derived chemicals and fuels.

2.
Phys Chem Chem Phys ; 21(9): 5117-5122, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30766991

RESUMO

Despite many advancements, an inexpensive ammonia synthesis catalyst free from hydrogen and nitrogen poisoning, and capable of synthesizing ammonia under mild conditions is still unknown and is long sought-after. Here we present an active nanoalloy catalyst, RuFe, formed by alloying highly active Ru and inexpensive Fe, capable of activating both N2 and H2 without blocking the surface active sites and thereby overcoming the major hurdle faced by the current best performing pure metal catalysts. This novel RuFe nanoalloy catalyst operates under milder conditions than the conventional Fe catalyst and is less expensive than the so far best performing Ru-based catalysts providing additional advantages. Most importantly, by integrating theory and experiments, we identified the underlying mechanisms responsible for lower surface poisoning of this catalyst, which will provide directions for fabricating poison-free efficient NH3 synthesis catalysts in future.

3.
Proc Natl Acad Sci U S A ; 113(50): E8011-E8020, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27911785

RESUMO

In2O3-x(OH)y nanoparticles have been shown to function as an effective gas-phase photocatalyst for the reduction of CO2 to CO via the reverse water-gas shift reaction. Their photocatalytic activity is strongly correlated to the number of oxygen vacancy and hydroxide defects present in the system. To better understand how such defects interact with photogenerated electrons and holes in these materials, we have studied the relaxation dynamics of In2O3-x(OH)y nanoparticles with varying concentration of defects using two different excitation energies corresponding to above-band-gap (318-nm) and near-band-gap (405-nm) excitations. Our results demonstrate that defects play a significant role in the excited-state, charge relaxation pathways. Higher defect concentrations result in longer excited-state lifetimes, which are attributed to improved charge separation. This correlates well with the observed trends in the photocatalytic activity. These results are further supported by density-functional theory calculations, which confirm the positions of oxygen vacancy and hydroxide defect states within the optical band gap of indium oxide. This enhanced understanding of the role these defects play in determining the optoelectronic properties and charge carrier dynamics can provide valuable insight toward the rational development of more efficient photocatalytic materials for CO2 reduction.

4.
Sci Technol Adv Mater ; 19(1): 44-52, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29410712

RESUMO

Despite having defects, amorphous titanium dioxide ([Formula: see text]) have attracted significant scientific attention recently. Pristine, as well as various doped [Formula: see text] catalysts, have been proposed as the potential photocatalysts for hydrogen production. Taking one step further, in this work, the author investigated the molecular and dissociative adsorption of water on the surfaces of pristine and [Formula: see text] doped [Formula: see text] catalysts by using density functional theory with Hubbard energy correction (DFT+U). The adsorption energy calculations indicate that even though there is a relatively higher spatial distance between the adsorbed water molecule and the [Formula: see text] surface, pristine [Formula: see text] surface is capable of anchoring [Formula: see text] molecule more strongly than the doped [Formula: see text] as well as the rutile (1 1 0) surface. Further, it was found that unlike water dissociation on crystalline [Formula: see text] surfaces, water on pristine [Formula: see text] catalyst experience the dissociation barrier. However, this barrier reduces significantly when [Formula: see text] is doped with [Formula: see text], providing an alternative route for the development of an inexpensive and more abundant catalyst for water splitting.

5.
J Am Chem Soc ; 138(4): 1206-14, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26759919

RESUMO

In this study we investigated, theoretically and experimentally, the unique photoactive behavior of pristine and defected indium oxide surfaces providing fundamental insights into their excited state properties as well as an explanation for the experimentally observed enhanced activity of defected indium oxide surfaces for the gas-phase reverse water gas shift reaction, CO2 + H2 + hν→ CO + H2O in the light compared to the dark. To this end, a detailed excited-state study of pristine and defected forms of indium oxide (In2O3, In2O3-x, In2O3(OH)y and In2O3-x(OH)y) surfaces was performed using time dependent density functional theory (TDDFT) calculations, the results of which were supported experimentally by transient absorption spectroscopy and photoconductivity measurements. It was found that the surface frustrated Lewis pairs (FLPs) created by a Lewis acidic coordinately unsaturated surface indium site proximal to an oxygen vacancy and a Lewis basic surface hydroxide site in In2O3-x(OH)y become more acidic and basic and hence more active in the ES compared to the GS. This provides a theoretical mechanism responsible for the enhanced activity and reduced activation energy of the photochemical reverse water gas shift reaction observed experimentally for In2O3-x(OH)y compared to the thermochemical reaction. This fundamental insight into the role of photoexcited surface FLPs for catalytic CO2 reduction could lead to improved photocatalysts for solar fuel production.

6.
Phys Chem Chem Phys ; 17(22): 14623-35, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-25971705

RESUMO

Designing catalytic nanostructures that can thermochemically or photochemically convert gaseous carbon dioxide into carbon based fuels is a significant challenge which requires a keen understanding of the chemistry of reactants, intermediates and products on surfaces. In this context, it has recently been reported that the reverse water gas shift reaction (RWGS), whereby carbon dioxide is reduced to carbon monoxide and water, CO2 + H2 → CO + H2O, can be catalysed by hydroxylated indium oxide nanocrystals, denoted In2O(3-x)(OH)y, more readily in the light than in the dark. The surface hydroxide groups and oxygen vacancies on In2O(3-x)(OH)y were both shown to assist this reaction. While this advance provides a first step toward the rational design and optimization of a single-component gas-phase CO2 reduction catalyst for solar fuels generation, the precise role of the hydroxide groups and oxygen vacancies in facilitating the reaction on In2O(3-x)(OH)y nanocrystals has not been resolved. In the work reported herein, for the first time we present in situ spectroscopic and kinetic observations, complemented by density functional theory analysis, that together provide mechanistic information into the surface reaction chemistry responsible for the thermochemical and photochemical RWGS reaction. Specifically, we demonstrate photochemical CO2 reduction at a rate of 150 µmol gcat(-1) hour(-1), which is four times better than the reduction rate in the dark, and propose a reaction mechanism whereby a surface active site of In2O(3-x)(OH)y, composed of a Lewis base hydroxide adjacent to a Lewis acid indium, together with an oxygen vacancy, assists the adsorption and heterolytic dissociation of H2 that enables the adsorption and reaction of CO2 to form CO and H2O as products. This mechanism, which has its analogue in molecular frustrated Lewis pair (FLP) chemistry and catalysis of CO2 and H2, is supported by preliminary kinetic investigations. The results of this study emphasize the importance of engineering the surfaces of nanostructures to facilitate gas-phase thermochemical and photochemical carbon dioxide reduction reactions to energy rich fuels at technologically significant rates.

7.
Cureus ; 15(10): e48002, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38034199

RESUMO

Calcific uremic arteriolopathy, or calciphylaxis, is a highly morbid, life-threatening syndrome of microvascular calcification leading to progressive skin necrosis. It affects 1-4% of the population with end-stage renal disease (ESRD) and is rarely seen in other conditions. The one-year mortality rate is 80% for patients with ulcerations. There is no evidence-based treatment, and the response to therapy is poor; thus, it creates a serious therapeutic challenge for clinicians. Our aim is to discuss a diagnostic approach and management of calciphylaxis and to raise awareness about this condition among the medical community. We are describing a case of calciphylaxis in a 68-year-old female with a past medical history of ESRD on hemodialysis, who presented with altered mental status and painful ulcers on her feet and thighs. The patient was admitted for acute encephalopathy due to sepsis secondary to a urinary tract infection (UTI) versus permacath-related bacteremia versus wound infection of pressure ulcers on the lower extremities. Broad-spectrum antibiotics were started. Computed tomography (CT) of bilateral thighs with contrast showed extensive arterial calcifications, characteristic of calciphylaxis. Nephrology recommended sodium thiosulfate with each hemodialysis session. Vitamin D and iron were discontinued. Despite therapy, the wound significantly progressed within the next eight weeks, leading to mortality due to sepsis. In conclusion, calcific uremic arteriolopathy is a challenging disease with a poor prognosis. Early diagnosis is crucial, so aggressive therapy can be started immediately. A multidisciplinary approach may improve survival in cases of calciphylaxis. More studies are needed to improve the diagnostic approach and medical management of the disease.

8.
Cureus ; 15(7): e41968, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37588321

RESUMO

BACKGROUND: Many individuals will also experience psychological side effects after a stroke episode, such as symptoms of depression, anxiety (generalized anxiety disorder (GAD)), and/or specific phobias, considerably decreasing their quality of life (QOL). OBJECTIVE: This study aimed to evaluate the prevalence of depression, obstructive sleep apnea (OSA), and concurrent anxiety (DOCA) and their outcomes (morbidity, disability (All Patient Refined Diagnosis Related Group (APRDRG) - loss of function), and discharge disposition) among acute ischemic stroke (AIS) hospitalizations. METHODS: A cross-sectional study used the National Inpatient Sample (NIS) from 2003-2017. Adults with hospitalizations with AIS were extracted, and DOCA was identified using ICD-9/10-CM codes. Weighted analysis using a chi-square test and mixed-effect multivariable survey logistic regression was used to assess the prevalence and role of DOCA in predicting outcomes. RESULTS: Out of 5,690,773 AIS hospitalizations, 2.7%, 3.1%, and 4.4% had depression, OSA, and GAD, respectively. In AIS patients, females had a higher prevalence of depression (3.4% vs. 2.3%) and GAD (5.9% vs. 3.0%) and a quality of life lower prevalence of OSA (2.2% vs 4.4%) in comparison to males (p<0.0001). Caucasians had a higher prevalence of depression, OSA, and GAD in comparison to others (African Americans/Hispanics/Asians/Native Americans). Depressed patients had a higher prevalence of morbidity (9% vs. 8% vs 5% vs. 7%), disability (46% vs. 46% vs. 35% vs. 37%), transfer to non-home (69% vs. 58% vs. 61% vs. 63%) in comparison with OSA, GAD, and non-DOCA patients, respectively (p<0.0001). Depression was associated with a 40% higher chance of severe disability (aOR 1.40; 95% CI 1.38-41), morbidity (1.36; 1.33-1.38), and discharge to non-home (1.54; 1.52-1.56). OSA and GAD had higher odds of non-home discharge amongst post-AIS hospitalizations. CONCLUSION: DOCA is associated with poor outcomes among post-AIS patients. Prompt recognition by screening and timely management of DOCA may mitigate the adverse outcomes.

9.
Nat Commun ; 13(1): 7205, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36418855

RESUMO

Light harvesting, separation of charge carriers, and surface reactions are three fundamental steps that are essential for an efficient photocatalyst. Here we show that these steps in the TiO2 can be boosted simultaneously by disorder engineering. A solid-state reduction reaction between sodium and TiO2 forms a core-shell c-TiO2@a-TiO2-x(OH)y heterostructure, comprised of HO-Ti-[O]-Ti surface frustrated Lewis pairs (SFLPs) embedded in an amorphous shell surrounding a crystalline core, which enables a new genre of chemical reactivity. Specifically, these SFLPs heterolytically dissociate dihydrogen at room temperature to form charge-balancing protonated hydroxyl groups and hydrides at unsaturated titanium surface sites, which display high reactivity towards CO2 reduction. This crystalline-amorphous heterostructure also boosts light absorption, charge carrier separation and transfer to SFLPs, while prolonged carrier lifetimes and photothermal heat generation further enhance reactivity. The collective results of this study motivate a general approach for catalytically generating sustainable chemicals and fuels through engineered disorder in heterogeneous CO2 photocatalysts.

10.
Adv Sci (Weinh) ; 5(6): 1700732, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29938164

RESUMO

Frustrated Lewis pairs (FLPs) created by sterically hindered Lewis acids and Lewis bases have shown their capacity for capturing and reacting with a variety of small molecules, including H2 and CO2, and thereby creating a new strategy for CO2 reduction. Here, the photocatalytic CO2 reduction behavior of defect-laden indium oxide (In2O3-x (OH) y ) is greatly enhanced through isomorphous substitution of In3+ with Bi3+, providing fundamental insights into the catalytically active surface FLPs (i.e., In-OH···In) and the experimentally observed "volcano" relationship between the CO production rate and Bi3+ substitution level. According to density functional theory calculations at the optimal Bi3+ substitution level, the 6s2 electron pair of Bi3+ hybridizes with the oxygen in the neighboring In-OH Lewis base site, leading to mildly increased Lewis basicity without influencing the Lewis acidity of the nearby In Lewis acid site. Meanwhile, Bi3+ can act as an extra acid site, serving to maximize the heterolytic splitting of reactant H2, and results in a more hydridic hydride for more efficient CO2 reduction. This study demonstrates that isomorphous substitution can effectively optimize the reactivity of surface catalytic active sites in addition to influencing optoelectronic properties, affording a better understanding of the photocatalytic CO2 reduction mechanism.

11.
Adv Sci (Weinh) ; 4(10): 1700252, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29051865

RESUMO

This study has designed and implemented a library of hetero-nanostructured catalysts, denoted as Pd@Nb2O5, comprised of size-controlled Pd nanocrystals interfaced with Nb2O5 nanorods. This study also demonstrates that the catalytic activity and selectivity of CO2 reduction to CO and CH4 products can be systematically tailored by varying the size of the Pd nanocrystals supported on the Nb2O5 nanorods. Using large Pd nanocrystals, this study achieves CO and CH4 production rates as high as 0.75 and 0.11 mol h-1 gPd-1, respectively. By contrast, using small Pd nanocrystals, a CO production rate surpassing 18.8 mol h-1 gPd-1 is observed with 99.5% CO selectivity. These performance metrics establish a new milestone in the champion league of catalytic nanomaterials that can enable solar-powered gas-phase heterogeneous CO2 reduction. The remarkable control over the catalytic performance of Pd@Nb2O5 is demonstrated to stem from a combination of photothermal, electronic and size effects, which is rationally tunable through nanochemistry.

12.
Nat Commun ; 7: 12553, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27550234

RESUMO

Silicon constitutes 28% of the earth's mass. Its high abundance, lack of toxicity and low cost coupled with its electrical and optical properties, make silicon unique among the semiconductors for converting sunlight into electricity. In the quest for semiconductors that can make chemicals and fuels from sunlight and carbon dioxide, unfortunately the best performers are invariably made from rare and expensive elements. Here we report the observation that hydride-terminated silicon nanocrystals with average diameter 3.5 nm, denoted ncSi:H, can function as a single component heterogeneous reducing agent for converting gaseous carbon dioxide selectively to carbon monoxide, at a rate of hundreds of µmol h(-1) g(-1). The large surface area, broadband visible to near infrared light harvesting and reducing power of SiH surface sites of ncSi:H, together play key roles in this conversion. Making use of the reducing power of nanostructured hydrides towards gaseous carbon dioxide is a conceptually distinct and commercially interesting strategy for making fuels directly from sunlight.

13.
J Phys Condens Matter ; 25(8): 085501, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23343885

RESUMO

A systematic study of electronic structure and band gap states is conducted to analyze the monodoping and charge compensated codoping of rutile TiO(2) with Rh and Nb, using the DFT + U approach. Doping of rutile TiO(2) with Rh atoms induces hybridized O 2p and Rh 4d band gap states leading to a red shift of the optical absorption edge, consistent with previous experimental studies. Since Rh monodoping may induce recombination centers, charge compensated codoping with Rh and Nb is also explored. This codoping induces an electron transfer from Nb induced states to Rh 4d states, which suppresses the formation of Rh(4+), thereby leading to a reduction in recombination centers and to the formation of more stable Rh(3+). A combination of band gap reduction by 0.5 eV and the elimination of band gap states that account for recombination centers makes (Rh, Nb)-codoped TiO(2) a more efficient and stable photocatalyst.


Assuntos
Nióbio/química , Teoria Quântica , Ródio/química , Titânio/química , Simulação por Computador , Modelos Moleculares , Estrutura Molecular , Propriedades de Superfície
14.
J Phys Condens Matter ; 25(47): 475501, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24172752

RESUMO

Visible light photocatalysts based on doped crystalline forms of titanium dioxide (TiO2) have attracted significant scientific attention in recent decades. Amorphous TiO2, despite many merits over crystalline phases, has not been studied as thoroughly. In this paper, an in-depth analysis of the electronic properties of doped amorphous TiO2 is performed using density functional theory with Hubbard's energy correction (DFT + U). Monodoping with p-type (N) and n-type (Nb) dopants shows appreciable bandgap reduction, but leads to recombination centers due to the presence of uncompensated charges. To resolve this issue, charge compensation via codoping is attempted. The charge compensated codoping not only reduces the bandgap by 0.4 eV but also eliminates the bandgap states present in monodoped systems responsible for charge carrier recombination. Furthermore, the localized tail states present in the aTiO2 system are eliminated to a large extent which leads to a decrease in the charge recombination and an increase in the charge migration. Thus, appropriate doping of amorphous TiO2 may lead to an alternative route for the development of visible light photocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA