Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mov Disord ; 39(6): 983-995, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581205

RESUMO

BACKGROUND: Based on a limited number of reported families, biallelic CA8 variants have currently been associated with a recessive neurological disorder named, cerebellar ataxia, mental retardation, and dysequilibrium syndrome 3 (CAMRQ-3). OBJECTIVES: We aim to comprehensively investigate CA8-related disorders (CA8-RD) by reviewing existing literature and exploring neurological, neuroradiological, and molecular observations in a cohort of newly identified patients. METHODS: We analyzed the phenotype of 27 affected individuals from 14 families with biallelic CA8 variants (including data from 15 newly identified patients from eight families), ages 4 to 35 years. Clinical, genetic, and radiological assessments were performed, and zebrafish models with ca8 knockout were used for functional analysis. RESULTS: Patients exhibited varying degrees of neurodevelopmental disorders (NDD), along with predominantly progressive cerebellar ataxia and pyramidal signs and variable bradykinesia, dystonia, and sensory impairment. Quadrupedal gait was present in only 10 of 27 patients. Progressive selective cerebellar atrophy, predominantly affecting the superior vermis, was a key diagnostic finding in all patients. Seven novel homozygous CA8 variants were identified. Zebrafish models demonstrated impaired early neurodevelopment and motor behavior on ca8 knockout. CONCLUSION: Our comprehensive analysis of phenotypic features indicates that CA8-RD exhibits a wide range of clinical manifestations, setting it apart from other subtypes within the category of CAMRQ. CA8-RD is characterized by cerebellar atrophy and should be recognized as part of the autosomal-recessive cerebellar ataxias associated with NDD. Notably, the presence of progressive superior vermis atrophy serves as a valuable diagnostic indicator. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Ataxia Cerebelar , Peixe-Zebra , Humanos , Ataxia Cerebelar/genética , Criança , Adolescente , Masculino , Feminino , Pré-Escolar , Animais , Adulto , Adulto Jovem , Anoctaminas/genética , Deficiência Intelectual/genética , Fenótipo , Transtornos do Neurodesenvolvimento/genética
2.
Proc Natl Acad Sci U S A ; 117(48): 30476-30487, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33214152

RESUMO

None of the current superresolution microscopy techniques can reliably image the changes in endogenous protein nanoclustering dynamics associated with specific conformations in live cells. Single-domain nanobodies have been invaluable tools to isolate defined conformational states of proteins, and we reasoned that expressing these nanobodies coupled to single-molecule imaging-amenable tags could allow superresolution analysis of endogenous proteins in discrete conformational states. Here, we used anti-GFP nanobodies tagged with photoconvertible mEos expressed as intrabodies, as a proof-of-concept to perform single-particle tracking on a range of GFP proteins expressed in live cells, neurons, and small organisms. We next expressed highly specialized nanobodies that target conformation-specific endogenous ß2-adrenoreceptor (ß2-AR) in neurosecretory cells, unveiling real-time mobility behaviors of activated and inactivated endogenous conformers during agonist treatment in living cells. We showed that activated ß2-AR (Nb80) is highly immobile and organized in nanoclusters. The Gαs-GPCR complex detected with Nb37 displayed higher mobility with surprisingly similar nanoclustering dynamics to that of Nb80. Activated conformers are highly sensitive to dynamin inhibition, suggesting selective targeting for endocytosis. Inactivated ß2-AR (Nb60) molecules are also largely immobile but relatively less sensitive to endocytic blockade. Expression of single-domain nanobodies therefore provides a unique opportunity to capture highly transient changes in the dynamic nanoscale organization of endogenous proteins.


Assuntos
Modelos Moleculares , Conformação Proteica , Receptores Adrenérgicos beta 2/química , Imagem Individual de Molécula , Anticorpos de Domínio Único/química , Animais , Linhagem Celular , Endocitose , Imunofluorescência , Expressão Gênica , Genes Reporter , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Camundongos , Ligação Proteica , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Proteínas Recombinantes de Fusão , Imagem Individual de Molécula/métodos , Anticorpos de Domínio Único/metabolismo , Peixe-Zebra
3.
Mol Psychiatry ; 26(3): 747-760, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33191396

RESUMO

Mutations in the family of neurexins (NRXN1, NRXN2 and NRXN3) have been repeatedly identified in patients with autism spectrum disorder (ASD) and schizophrenia (SCZ). However, it remains unclear how these DNA variants affect neurexin functions and thereby predispose to these neurodevelopmental disorders. Understanding both the wild-type and pathologic roles of these genes in the brain could help unveil biological mechanisms underlying mental disorders. In this regard, numerous studies have focused on generating relevant loss-of-function (LOF) mammalian models. Although this has increased our knowledge about their normal functions, the potential pathologic role(s) of these human variants remains elusive. Indeed, after reviewing the literature, it seems apparent that a traditional LOF-genetic approach based on complete LOF might not be sufficient to unveil the role of these human mutations. First, these genes present a very complex transcriptome and total-LOF of all isoforms may not be the cause of toxicity in patients, particularly given evidence that causative variants act through haploinsufficiency. Moreover, human DNA variants may not all lead to LOF but potentially to intricate transcriptome changes that could also include the generation of aberrant isoforms acting as a gain-of-function (GOF). Furthermore, their transcriptomic complexity most likely renders them prone to genetic compensation when one tries to manipulate them using traditional site-directed mutagenesis approaches, and this could act differently from model to model leading to heterogeneous and conflicting phenotypes. This review compiles the relevant literature on variants identified in human studies and on the mouse models currently deployed, and offers suggestions for future research.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Esquizofrenia , Transtorno do Espectro Autista/genética , Humanos , Camundongos , Mutação/genética , Proteínas do Tecido Nervoso/genética , Esquizofrenia/genética
4.
Mar Drugs ; 18(7)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629781

RESUMO

The 27-amino acid (aa)-long d-conotoxin TxVIA, originally isolated from the mollusc-hunting cone snail Conus textile, slows voltage-gated sodium (NaV) channel inactivation in molluscan neurons, but its mammalian ion channel targets remain undetermined. In this study, we confirmed that TxVIA was inactive on mammalian NaV1.2 and NaV1.7 even at high concentrations (10 µM). Given the fact that invertebrate NaV channel and T-type calcium channels (CaV3.x) are evolutionarily related, we examined the possibility that TxVIA may act on CaV3.x. Electrophysiological characterisation of the native TxVIA on CaV3.1, 3.2 and 3.3 revealed that TxVIA preferentially inhibits CaV3.2 current (IC50 = 0.24 mM) and enhances CaV3.1 current at higher concentrations. In fish bioassays TxVIA showed little effect on zebrafish behaviours when injected intramuscular at 250 ng/100 mg fish. The binding sites for TxVIA at NaV1.7 and CaV3.1 revealed that their channel binding sites contained a common epitope.


Assuntos
Conotoxinas/farmacologia , Animais , Canais de Cálcio Tipo T , Linhagem Celular , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Ratos , Peixe-Zebra
5.
Hum Mol Genet ; 25(9): 1728-38, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26908606

RESUMO

Spinal muscular atrophy (SMA) is an autosomal recessive disease linked to survival motor neuron (SMN) protein deficiency. While SMN protein is expressed ubiquitously, its deficiency triggers tissue-specific hallmarks, including motor neuron death and muscle atrophy, leading to impaired motor functions and premature death. Here, using stable miR-mediated knockdown technology in zebrafish, we developed the first vertebrate system allowing transgenic spatio-temporal control of the smn1 gene. Using this new model it is now possible to investigate normal and pathogenic SMN function(s) in specific cell types, independently or in synergy with other cell populations. We took advantage of this new system to first test the effect of motor neuron or muscle-specific smn1 silencing. Anti-smn1 miRNA expression in motor neurons, but not in muscles, reproduced SMA hallmarks, including abnormal motor neuron development, poor motor function and premature death. Interestingly, smn1 knockdown in motor neurons also induced severe late-onset phenotypes including scoliosis-like body deformities, weight loss, muscle atrophy and, seen for the first time in zebrafish, reduction in the number of motor neurons, indicating motor neuron degeneration. Taken together, we have developed a new transgenic system allowing spatio-temporal control of smn1 expression in zebrafish, and using this model, we have demonstrated that smn1 silencing in motor neurons alone is sufficient to reproduce SMA hallmarks in zebrafish. It is noteworthy that this research is going beyond SMA as this versatile gene-silencing transgenic system can be used to knockdown any genes of interest, filling the gap in the zebrafish genetic toolbox and opening new avenues to study gene functions in this organism.


Assuntos
Embrião não Mamífero/citologia , MicroRNAs/genética , Neurônios Motores/patologia , Músculo Esquelético/patologia , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Neurônios Motores/metabolismo , Músculo Esquelético/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/antagonistas & inibidores , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Peixe-Zebra
6.
Genesis ; 53(5): 321-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25864959

RESUMO

miR218-1 and miR218-2 are embedded in introns of SLIT2 and SLIT3, respectively, an arrangement conserved throughout vertebrate genomes. Both miR218 genes are predicted to be transcribed in the same orientation as their host genes and were assumed to be spliced from Slit2/3 primary transcripts. In zebrafish miR218 is active in cranial nerve motor nuclei and spinal cord motor neurons, while slit2 and slit3 are expressed predominantly in the midline. This differential expression pattern suggested independent regulation of miR218 genes by distinct enhancers. We tested conserved noncoding elements for regulatory activity by reporter gene transgenesis in zebrafish. Two human enhancers, 76 kb and 130 kb distant from miR218-2, were identified that drove GFP expression in zebrafish in an almost complete miR218 expression pattern. In the zebrafish slit3 locus, two enhancers with identical activity were discovered. In human SLIT2 one enhancer 52 kb upstream of miR218-1 drove an expression pattern very similar to the enhancers of miR218-2. This establishes that miR218-1/-2 regulatory units are nested within SLIT2/3 and that they are duplicates of an ancestral single locus. Due to the strong activity of the enhancers, unique transgenic lines were created that facilitate morphological and gene functional genetic experiments in motor neurons.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Íntrons , MicroRNAs/genética , Neurônios Motores/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas de Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
7.
J Proteome Res ; 14(10): 4372-81, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26322961

RESUMO

Venomous marine cone snails produce a unique and remarkably diverse range of venom peptides (conotoxins and conopeptides) that have proven to be invaluable as pharmacological probes and leads to new therapies. Conus catus is a hook-and-line fish hunter from clade I, with ∼20 conotoxins identified, including the analgesic ω-conotoxin CVID (AM336). The current study unravels the venom composition of C. catus with tandem mass spectrometry and 454 sequencing data. From the venom gland transcriptome, 104 precursors were recovered from 11 superfamilies, with superfamily A (especially κA-) conotoxins dominating (77%) their venom. Proteomic analysis confirmed that κA-conotoxins dominated the predation-evoked milked venom of each of six C. catus analyzed and revealed remarkable intraspecific variation in both the intensity and type of conotoxins. High-throughput FLIPR assays revealed that the predation-evoked venom contained a range of conotoxins targeting the nAChR, Cav, and Nav ion channels, consistent with α- and ω-conotoxins being used for predation by C. catus. However, the κA-conotoxins did not act at these targets but induced potent and rapid immobilization followed by bursts of activity and finally paralysis when injected intramuscularly in zebrafish. Our venomics approach revealed the complexity of the envenomation strategy used by C. catus, which contains a mix of both excitatory and inhibitory venom peptides.


Assuntos
Bloqueadores dos Canais de Cálcio/isolamento & purificação , Conotoxinas/isolamento & purificação , Caramujo Conus/química , Venenos de Moluscos/isolamento & purificação , Antagonistas Nicotínicos/isolamento & purificação , Bloqueadores dos Canais de Potássio/isolamento & purificação , Sequência de Aminoácidos , Animais , Organismos Aquáticos , Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/toxicidade , Canais de Cálcio/metabolismo , Conotoxinas/química , Conotoxinas/toxicidade , Caramujo Conus/fisiologia , Anotação de Sequência Molecular , Dados de Sequência Molecular , Venenos de Moluscos/química , Venenos de Moluscos/toxicidade , Atividade Motora/efeitos dos fármacos , Antagonistas Nicotínicos/química , Antagonistas Nicotínicos/toxicidade , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/toxicidade , Canais de Potássio/metabolismo , Comportamento Predatório/fisiologia , Receptores Nicotínicos/metabolismo , Especificidade da Espécie , Transcriptoma , Peixe-Zebra/fisiologia
8.
Hum Mol Genet ; 22(22): 4562-78, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23804750

RESUMO

Duchenne muscular dystrophy (DMD) is a neuromuscular disease caused by mutations in the dystrophin gene. The subcellular mechanisms of DMD remain poorly understood and there is currently no curative treatment available. Using a Caenorhabditis elegans model for DMD as a pharmacologic and genetic tool, we found that cyclosporine A (CsA) reduces muscle degeneration at low dose and acts, at least in part, through a mitochondrial cyclophilin D, CYN-1. We thus hypothesized that CsA acts on mitochondrial permeability modulation through cyclophilin D inhibition. Mitochondrial patterns and dynamics were analyzed, which revealed dramatic mitochondrial fragmentation not only in dystrophic nematodes, but also in a zebrafish model for DMD. This abnormal mitochondrial fragmentation occurs before any obvious sign of degeneration can be detected. Moreover, we demonstrate that blocking/delaying mitochondrial fragmentation by knocking down the fission-promoting gene drp-1 reduces muscle degeneration and improves locomotion abilities of dystrophic nematodes. Further experiments revealed that cytochrome c is involved in muscle degeneration in C. elegans and seems to act, at least in part, through an interaction with the inositol trisphosphate receptor calcium channel, ITR-1. Altogether, our findings reveal that mitochondria play a key role in the early process of muscle degeneration and may be a target of choice for the design of novel therapeutics for DMD. In addition, our results provide the first indication in the nematode that (i) mitochondrial permeability transition can occur and (ii) cytochrome c can act in cell death.


Assuntos
Ciclofilinas/metabolismo , Ciclosporina/farmacologia , Citocromos c/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Dinâmica Mitocondrial , Distrofia Muscular Animal/tratamento farmacológico , Distrofia Muscular de Duchenne/metabolismo , Animais , Animais Geneticamente Modificados , Sítios de Ligação , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Morte Celular , Ciclofilinas/antagonistas & inibidores , Citocromos c/genética , Técnicas de Silenciamento de Genes , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Metazolamida/farmacologia , Dinâmica Mitocondrial/efeitos dos fármacos , Dinâmica Mitocondrial/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Filogenia , Homologia de Sequência , Peixe-Zebra/embriologia , Peixe-Zebra/genética
9.
Hum Genet ; 134(11-12): 1163-82, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26337422

RESUMO

Protein-coding mutations in the transcription factor-encoding gene ARX cause various forms of intellectual disability (ID) and epilepsy. In contrast, variations in surrounding non-coding sequences are correlated with milder forms of non-syndromic ID and autism and had suggested the importance of ARX gene regulation in the etiology of these disorders. We compile data on several novel and some already identified patients with or without ID that carry duplications of ARX genomic region and consider likely genetic mechanisms underlying the neurodevelopmental defects. We establish the long-range regulatory domain of ARX and identify its brain region-specific autoregulation. We conclude that neurodevelopmental disturbances in the patients may not simply arise from increased dosage due to ARX duplication. This is further exemplified by a small duplication involving a non-functional ARX copy, but with duplicated enhancers. ARX enhancers are located within a 504-kb region and regulate expression specifically in the forebrain in developing and adult zebrafish. Transgenic enhancer-reporter lines were used as in vivo tools to delineate a brain region-specific negative and positive autoregulation of ARX. We find autorepression of ARX in the telencephalon and autoactivation in the ventral thalamus. Fluorescently labeled brain regions in the transgenic lines facilitated the identification of neuronal outgrowth and pathfinding disturbances in the ventral thalamus and telencephalon that occur when arxa dosage is diminished. In summary, we have established a model for how breakpoints in long-range gene regulation alter the expression levels of a target gene brain region-specifically, and how this can cause subtle neuronal phenotypes relating to the etiology of associated neuropsychiatric disease.


Assuntos
Variações do Número de Cópias de DNA , Duplicação Gênica , Proteínas de Homeodomínio/genética , Deficiência Intelectual/genética , Fatores de Transcrição/genética , Adulto , Animais , Animais Geneticamente Modificados , Encéfalo/embriologia , Encéfalo/metabolismo , Estudos de Casos e Controles , Embrião não Mamífero , Feminino , Dosagem de Genes , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Fatores de Transcrição/metabolismo , Peixe-Zebra
10.
Methods ; 56(1): 103-13, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22041718

RESUMO

We previously reported the use of the cheap and fast-growing nematode Caenorhabditis elegans to search for molecules, which reduce muscle degeneration in a model for Duchenne Muscular Dystrophy (DMD). We showed that Prednisone, a steroid that is generally prescribed as a palliative treatment to DMD patients, also reduced muscle degeneration in the C. elegans DMD model. We further showed that this strategy could lead to the discovery of new and unsuspected small molecules, which have been further validated in a mammalian model of DMD, i.e. the mdx mouse model. These proof-of-principles demonstrate that C. elegans can serve as a screening tool to search for drugs against neuromuscular disorders. Here, we report and discuss two methodologies used to screen chemical libraries for drugs against muscle disorders in C. elegans. We first describe a manual method used to find drugs against DMD. We further present a semi-automated method, which is currently in use for the search of drugs against the Schwartz-Jampel Syndrome (SJS). Both assays are simple to implement and can be readily transposed and/or adapted to screens against other muscle/neuromuscular diseases, which can be modeled in the worm. Finally we discuss, with respect to our experience and knowledge, the different parameters that have to be taken into account before choosing one or the other method.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Automação , Modelos Animais de Doenças , Humanos , Distrofia Muscular Animal , Osteocondrodisplasias
11.
Front Physiol ; 14: 1221310, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601640

RESUMO

We recently introduced the Cre/Lox technology in our laboratory for both transient (mRNA injections) and stable/transgenic experiments. We experienced significant issues such as silencing, mosaicism, and partial recombination using both approaches. Reviewing the literature gave us the impression that these issues are common among the zebrafish community using the Cre/Lox system. While some researchers took advantage of these problems for specific applications, such as cell and lineage tracing using the Zebrabow construct, we tried here to improve the efficiency and reliability of this system by constituting and testing a new set of tools for zebrafish genetics. First, we implemented a codon-improved Cre version (iCre) designed for rodent studies to counteract some of the aforementioned problems. This eukaryotic-like iCre version was engineered to i) reduce silencing, ii) increase mRNA stability, iii) enhance translational efficiency, and iv) improve nuclear translocation. Second, we established a new set of tol2-kit compatible vectors to facilitate the generation of either iCre-mRNA or iCre-transgenes for transient and transgenic experiments, respectively. We then validated the use of this material and are providing tips for users. Interestingly, during the validation steps, we found that maternal iCRE-mRNA and/or protein deposition from female transgenics systematically led to complete/homogeneous conversion of all tested Lox-responder-transgenes, as opposed to some residual imperfect conversion when using males-drivers or mRNA injections. Considering that we did not find any evidence of Cre-protein soaking and injections in the literature as it is usually conducted with cells, we tested these approaches. While soaking of cell-permeant CRE-protein did not lead to any detectable Lox-conversion, 1ng-10 ng protein injections led to robust and homogeneous Lox-recombination, suggesting that the use of protein could be a robust option for exogenous delivery. This approach may be particularly useful to manipulate housekeeping genes involved in development, sex determination and reproduction which are difficult to investigate with traditional knockout approaches. All in all, we are providing here a new set of tools that should be useful in the field.

12.
Curr Biol ; 33(19): 4276-4284.e4, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37729911

RESUMO

Plasma membrane rupture can result in catastrophic cell death. The skeletal muscle fiber plasma membrane, the sarcolemma, provides an extreme example of a membrane subject to mechanical stress since these cells specifically evolved to generate contraction and movement. A quantitative model correlating ultrastructural remodeling of surface architecture with tissue changes in vivo is required to understand how membrane domains contribute to the shape changes associated with tissue deformation in whole animals. We and others have shown that loss of caveolae, small invaginations of the plasma membrane particularly prevalent in the muscle sarcolemma, renders the plasma membrane more susceptible to rupture during stretch.1,2,3 While it is thought that caveolae are able to flatten and be absorbed into the bulk membrane to buffer local membrane expansion, a direct demonstration of this model in vivo has been unachievable since it would require measurement of caveolae at the nanoscale combined with detailed whole-animal morphometrics under conditions of perturbation. Here, we describe the development and application of the "active trapping model" where embryonic zebrafish are immobilized in a curved state that mimics natural body axis curvature during an escape response. The model is amenable to multiscale, multimodal imaging including high-resolution whole-animal three-dimensional quantitative electron microscopy. Using the active trapping model, we demonstrate the essential role of caveolae in maintaining sarcolemmal integrity and quantify the specific contribution of caveolar-derived membrane to surface expansion. We show that caveolae directly contribute to an increase in plasma membrane surface area under physiologically relevant membrane deformation conditions.


Assuntos
Cavéolas , Peixe-Zebra , Animais , Membrana Celular , Cavéolas/metabolismo , Fibras Musculares Esqueléticas , Microscopia Eletrônica
13.
BMC Dev Biol ; 12: 37, 2012 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-23244389

RESUMO

BACKGROUND: Genetic studies in mouse have demonstrated the crucial function of PAX4 in pancreatic cell differentiation. This transcription factor specifies ß- and δ-cell fate at the expense of α-cell identity by repressing Arx gene expression and ectopic expression of PAX4 in α-cells is sufficient to convert them into ß-cells. Surprisingly, no Pax4 orthologous gene can be found in chicken and Xenopus tropicalis raising the question of the function of pax4 gene in lower vertebrates such as in fish. In the present study, we have analyzed the expression and the function of the orthologous pax4 gene in zebrafish. RESULTS: pax4 gene is transiently expressed in the pancreas of zebrafish embryos and is mostly restricted to endocrine precursors as well as to some differentiating δ- and ε-cells but was not detected in differentiating ß-cells. pax4 knock-down in zebrafish embryos caused a significant increase in α-cells number while having no apparent effect on ß- and δ-cell differentiation. This rise of α-cells is due to an up-regulation of the Arx transcription factor. Conversely, knock-down of arx caused to a complete loss of α-cells and a concomitant increase of pax4 expression but had no effect on the number of ß- and δ-cells. In addition to the mutual repression between Arx and Pax4, these two transcription factors negatively regulate the transcription of their own gene. Interestingly, disruption of pax4 RNA splicing or of arx RNA splicing by morpholinos targeting exon-intron junction sites caused a blockage of the altered transcripts in cell nuclei allowing an easy characterization of the arx- and pax4-deficient cells. Such analyses demonstrated that arx knock-down in zebrafish does not lead to a switch of cell fate, as reported in mouse, but rather blocks the cells in their differentiation process towards α-cells. CONCLUSIONS: In zebrafish, pax4 is not required for the generation of the first ß- and δ-cells deriving from the dorsal pancreatic bud, unlike its crucial role in the differentiation of these cell types in mouse. On the other hand, the mutual repression between Arx and Pax4 is observed in both mouse and zebrafish. These data suggests that the main original function of Pax4 during vertebrate evolution was to modulate the number of pancreatic α-cells and its role in ß-cells differentiation appeared later in vertebrate evolution.


Assuntos
Embrião não Mamífero/citologia , Células Secretoras de Glucagon/citologia , Células Secretoras de Glucagon/metabolismo , Proteínas de Homeodomínio/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Animais , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Morfolinos/farmacologia , Fatores de Transcrição Box Pareados/biossíntese , Fatores de Transcrição Box Pareados/genética , Pâncreas/embriologia , Splicing de RNA/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/biossíntese , Proteínas de Peixe-Zebra/biossíntese
14.
Nat Commun ; 13(1): 895, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173170

RESUMO

Habituation is a form of learning during which animals stop responding to repetitive stimuli, and deficits in habituation are characteristic of several psychiatric disorders. Due to technical challenges, the brain-wide networks mediating habituation are poorly understood. Here we report brain-wide calcium imaging during larval zebrafish habituation to repeated visual looming stimuli. We show that different functional categories of loom-sensitive neurons are located in characteristic locations throughout the brain, and that both the functional properties of their networks and the resulting behavior can be modulated by stimulus saliency and timing. Using graph theory, we identify a visual circuit that habituates minimally, a moderately habituating midbrain population proposed to mediate the sensorimotor transformation, and downstream circuit elements responsible for higher order representations and the delivery of behavior. Zebrafish larvae carrying a mutation in the fmr1 gene have a systematic shift toward sustained premotor activity in this network, and show slower behavioral habituation.


Assuntos
Habituação Psicofisiológica/fisiologia , Mesencéfalo/fisiologia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Ondas Encefálicas/fisiologia , Cálcio/análise , Larva/fisiologia , Neurônios/fisiologia , Proteínas de Ligação a RNA/genética , Reflexo de Sobressalto/fisiologia , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética
15.
Genome Med ; 14(1): 7, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35042540

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a complex, late-onset, neurodegenerative disease with a genetic contribution to disease liability. Genome-wide association studies (GWAS) have identified ten risk loci to date, including the TNIP1/GPX3 locus on chromosome five. Given association analysis data alone cannot determine the most plausible risk gene for this locus, we undertook a comprehensive suite of in silico, in vivo and in vitro studies to address this. METHODS: The Functional Mapping and Annotation (FUMA) pipeline and five tools (conditional and joint analysis (GCTA-COJO), Stratified Linkage Disequilibrium Score Regression (S-LDSC), Polygenic Priority Scoring (PoPS), Summary-based Mendelian Randomisation (SMR-HEIDI) and transcriptome-wide association study (TWAS) analyses) were used to perform bioinformatic integration of GWAS data (Ncases = 20,806, Ncontrols = 59,804) with 'omics reference datasets including the blood (eQTLgen consortium N = 31,684) and brain (N = 2581). This was followed up by specific expression studies in ALS case-control cohorts (microarray Ntotal = 942, protein Ntotal = 300) and gene knockdown (KD) studies of human neuronal iPSC cells and zebrafish-morpholinos (MO). RESULTS: SMR analyses implicated both TNIP1 and GPX3 (p < 1.15 × 10-6), but there was no simple SNP/expression relationship. Integrating multiple datasets using PoPS supported GPX3 but not TNIP1. In vivo expression analyses from blood in ALS cases identified that lower GPX3 expression correlated with a more progressed disease (ALS functional rating score, p = 5.5 × 10-3, adjusted R2 = 0.042, Beffect = 27.4 ± 13.3 ng/ml/ALSFRS unit) with microarray and protein data suggesting lower expression with risk allele (recessive model p = 0.06, p = 0.02 respectively). Validation in vivo indicated gpx3 KD caused significant motor deficits in zebrafish-MO (mean difference vs. control ± 95% CI, vs. control, swim distance = 112 ± 28 mm, time = 1.29 ± 0.59 s, speed = 32.0 ± 2.53 mm/s, respectively, p for all < 0.0001), which were rescued with gpx3 expression, with no phenotype identified with tnip1 KD or gpx3 overexpression. CONCLUSIONS: These results support GPX3 as a lead ALS risk gene in this locus, with more data needed to confirm/reject a role for TNIP1. This has implications for understanding disease mechanisms (GPX3 acts in the same pathway as SOD1, a well-established ALS-associated gene) and identifying new therapeutic approaches. Few previous examples of in-depth investigations of risk loci in ALS exist and a similar approach could be applied to investigate future expected GWAS findings.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/genética , Animais , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Humanos , Polimorfismo de Nucleotídeo Único , Peixe-Zebra/genética
16.
Hum Mol Genet ; 18(21): 4089-101, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19648295

RESUMO

Duchenne Muscular Dystrophy is an inherited muscle degeneration disease for which there is still no efficient treatment. However, compounds active on the disease may already exist among approved drugs but are difficult to identify in the absence of cellular models. We used the Caenorhabditis elegans animal model to screen a collection of 1000 already approved compounds. Two of the most active hits obtained were methazolamide and dichlorphenamide, carbonic anhydrase inhibitors widely used in human therapy. In C. elegans, these drugs were shown to interact with CAH-4, a putative carbonic anhydrase. The therapeutic efficacy of these compounds was further validated in long-term experiments on mdx mice, the mouse model of Duchenne Muscular Dystrophy. Mice were treated for 120 days with food containing methazolamide or dichlorphenamide at two doses each. Musculus tibialis anterior and diaphragm muscles were histologically analyzed and isometric muscle force was measured in M. extensor digitorum longus. Both substances increased the tetanic muscle force in the treated M. extensor digitorum longus muscle group, dichlorphenamide increased the force significantly by 30%, but both drugs failed to increase resistance of muscle fibres to eccentric contractions. Histological analysis revealed a reduction of centrally nucleated fibers in M. tibialis anterior and diaphragm in the treated groups. These studies further demonstrated that a C. elegans-based screen coupled with a mouse model validation strategy can lead to the identification of potential pharmacological agents for rare diseases.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Modelos Animais de Doenças , Distrofina/deficiência , Distrofia Muscular Animal/prevenção & controle , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Inibidores da Anidrase Carbônica/metabolismo , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Diclorofenamida/farmacologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Distrofina/genética , Humanos , Metazolamida/farmacologia , Camundongos , Camundongos Endogâmicos mdx , Atividade Motora , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/fisiopatologia , Interferência de RNA , Fatores de Tempo
17.
Commun Biol ; 4(1): 792, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172817

RESUMO

The most common genetic cause of amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia (FTD) is a hexanucleotide repeat expansion within the C9orf72 gene. Reduced levels of C9orf72 mRNA and protein have been found in ALS/FTD patients, but the role of this protein in disease pathogenesis is still poorly understood. Here, we report the generation and characterization of a stable C9orf72 loss-of-function (LOF) model in the zebrafish. We show that reduced C9orf72 function leads to motor defects, muscle atrophy, motor neuron loss and mortality in early larval and adult stages. Analysis of the structure and function of the neuromuscular junctions (NMJs) of the larvae, reveal a marked reduction in the number of presynaptic and postsynaptic structures and an impaired release of quantal synaptic vesicles at the NMJ. Strikingly, we demonstrate a downregulation of SV2a upon C9orf72-LOF and a reduced rate of synaptic vesicle cycling. Furthermore, we show a reduced number and size of Rab3a-postive synaptic puncta at NMJs. Altogether, these results reveal a key function for C9orf72 in the control of presynaptic vesicle trafficking and release at the zebrafish larval NMJ. Our study demonstrates an important role for C9orf72 in ALS/FTD pathogenesis, where it regulates synaptic vesicle release and neuromuscular functions.


Assuntos
Proteína C9orf72/fisiologia , Doenças da Junção Neuromuscular/etiologia , Vesículas Sinápticas/fisiologia , Esclerose Lateral Amiotrófica/etiologia , Animais , Demência Frontotemporal/etiologia , Peixe-Zebra
18.
G3 (Bethesda) ; 11(12)2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34499171

RESUMO

Here we describe a short feasibility study and methodological framework for the production of stable, CRISPR/Cas9-based, large genomic deletions in zebrafish, ranging from several base pairs (bp) to hundreds of kilobases (kb). Using a cocktail of four single guide RNAs (sgRNAs) targeting a single genomic region mixed with a marker-sgRNA against the pigmentation gene tyrosinase, we demonstrate that one can easily and accurately excise genomic regions such as promoters, protein domains, specific exons, or whole genes. We exemplify this technique with a complex gene family, neurexins, composed of three duplicated genes with multiple promoters and intricate splicing processes leading to thousands of isoforms. We precisely deleted small regions such as their transmembrane domains (150 bp deletion in average) to their entire genomic locus (300 kb deletion for nrxn1a for instance). We find that both the concentration and ratio of Cas9/sgRNAs are critical for the successful generation of these large deletions and, interestingly, that in our study, their transmission frequency does not seem to decrease with increasing distance between sgRNA target sites. Considering the growing reports and debate about genetically compensated small indel mutants, the use of large-deletion approaches is likely to be widely adopted in studies of gene function. This strategy will also be key to the study of non-coding genomic regions. Note that we are also describing here a custom method to produce the sgRNAs, which proved to be faster and more robust than the ones traditionally used in the community to date.


Assuntos
Sistemas CRISPR-Cas , Peixe-Zebra , Animais , Éxons , Genômica , RNA Guia de Cinetoplastídeos/genética , Peixe-Zebra/genética
19.
J Cell Biol ; 220(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34633413

RESUMO

The cavin proteins are essential for caveola biogenesis and function. Here, we identify a role for the muscle-specific component, Cavin4, in skeletal muscle T-tubule development by analyzing two vertebrate systems, mouse and zebrafish. In both models, Cavin4 localized to T-tubules, and loss of Cavin4 resulted in aberrant T-tubule maturation. In zebrafish, which possess duplicated cavin4 paralogs, Cavin4b was shown to directly interact with the T-tubule-associated BAR domain protein Bin1. Loss of both Cavin4a and Cavin4b caused aberrant accumulation of interconnected caveolae within the T-tubules, a fragmented T-tubule network enriched in Caveolin-3, and an impaired Ca2+ response upon mechanical stimulation. We propose a role for Cavin4 in remodeling the T-tubule membrane early in development by recycling caveolar components from the T-tubule to the sarcolemma. This generates a stable T-tubule domain lacking caveolae that is essential for T-tubule function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sarcolema/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Cavéolas/metabolismo , Linhagem Celular , Embrião não Mamífero/metabolismo , Imageamento Tridimensional , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestrutura , Músculo Esquelético/ultraestrutura , Ligação Proteica , Sarcolema/ultraestrutura , Peixe-Zebra/embriologia
20.
Proc Natl Acad Sci U S A ; 104(50): 19808-12, 2007 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-18077412

RESUMO

Assigning functions to every gene in a living organism is the next challenge for functional genomics. In fact, 85-90% of the 19,000 genes of the nematode Caenorhabditis elegans genome do not produce any visible phenotype when inactivated, which hampers determining their function, especially when they do not belong to previously characterized gene families. We used (1)H high-resolution magic angle spinning NMR spectroscopy ((1)H HRMAS-NMR) to reveal the latent phenotype associated to superoxide dismutase (sod-1) and catalase (ctl-1) C. elegans mutations, both involved in the elimination of radical oxidative species. These two silent mutations are significantly discriminated from the wild-type strain and from each other. We identify a metabotype significantly associated with these mutations involving a general reduction of fatty acyl resonances from triglycerides, unsaturated lipids being known targets of free radicals. This work opens up perspectives for the use of (1)H HRMAS-NMR as a molecular phenotyping device for model organisms. Because it is amenable to high throughput and is shown to be highly informative, this approach may rapidly lead to a functional and integrated metabonomic mapping of the C. elegans genome at the systems biology level.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Fenótipo , Animais , Caenorhabditis elegans/classificação , Genoma Helmíntico , Genômica , Espectroscopia de Ressonância Magnética , Mutação , Estresse Oxidativo/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA